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Abstract: - In the paper, a novel estimation method is proposed, concerning the wide-sense stationarity test 
of the signals. Background information is given about the concept of stationarity of the processes and 
signals. The problem of the signal stationarity estimation is addressed along with criticism of the available 
stationarity tests. Further, a new wide-sense stationarity estimation method is described, involving 
estimation of the mean-, variance- and autocovariance- stationarity of a signal. Finally, a few representative 
signals are tested and the results clearly indicate the consistence of the proposed test method. It is 
implemented in Matlab®-environment and can be download and use for free.  
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1. INTRODUCTION 
 

The estimation whether a given process is 
stationary or not is a classic problem in the statistics, 
econometrics, signal processing etc. Multiple tests 
exist for this purpose (e.g., Kwiatkowski–Phillips–
Schmidt–Shin test [1], Dickey–Fuller test [1], 
Phillips–Perron test [2]), but they are somehow 
restricted to the hypothesis of either trend-stationarity 
or unit-root non-stationarity. However, it is possible 
a process to be deterministic and non-stationary and 
yet has no single unit-root (e.g., linear frequency-
modulated process), and so the different statistical 
tests could give contradictory results.  

In the applied signal processing one is dealing 
primary with signals instead of the corresponding 
underlying processes, so the basic consideration is 
whether a signal is stationary or not. Moreover, the 
signal is considered “as it is” and hence the inferential 
statistical analysis is not of use. 

In order to overcome the above, we propose a 
novel approach for signal stationarity estimation 
based on the assumption that if the signal is wide-
sense stationary then the local statistical properties up 
to the second-order estimated for different parts of the 
signal are going to be approximately equal.  
 
2. BACKGROUND 
 

Let’s consider a discrete or sampled and quantized 
continuous a-priory unknown process or 

phenomenon   , : ,X s t s S t T      which is 

an object of observation (measurement) by means of 

an experiment. Without loss of generality one can 
assume that the process takes place in the time-
domain T. One may define all possible results of the 
experiment as a sample space S [1], such that 

 

       1 2, ,..., ,...,r RS s s s s ,                      (1) 

 
where rs  is a possible outcome of the measurement 

experiment. All members of S (the aggregate 
observations) are named population [1].   
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Figure 1. An event matrix  ,X e t  along with graphical 

representation of some related statistical concepts 
concerning its interpretation and processing.   

 
For the time of observation (measurement) a set of 

outcome results (events) are collected termed event 
space E S . The last is actually consisted of 
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observations (events) arranged in an event matrix 

 , : ,M NX e t M N   as is shown in Fig. 1 (e.g., 

N parallel measurements of body temperature in M 
points). For fixed event me , ( )eX t  is a time series 

( )x t  and for fixed time nt , ( )tX e  is an ensemble of 

realizations ( )x e .  

Multiple statistical properties could be assigned to 

the event matrix  ,X e t  but of particular interest in 

this paper are the first and second order statistical 
moments – the mean and the covariance of the 
process (the last one includes also the variance). 

In general, most of the processes are not fully 
cognizable since one cannot obtain all possible 
realizations of a given process i.e., the sample space 
S and the corresponding population are not fully 
available. In such case only the subset of the observed 
(measured) events E is of use and hence one could 
estimate only the parameters of the process itself via 
sample (empirical) mean ˆ x  and sample cross-

covariance x̂y  of the acquired data. In the common 

case, ˆ ( )x t  and ˆ ( )xy t  are functions of the time and 

they are calculated over ensembles of realizations 
(i.e., column-wise on Fig. 1) [3, 4]: 

 

   
1

1
ˆ ,

M

x n m n
m

t x e t
M



 ,                  (2) 

     
1

1
ˆ , , ,

M

xy k n m k m n
m

t t x e t x e t
M



 .         (3) 

 
A special case of process is one for which [3, 4]:  
 

 ˆ ˆ .,x n xt const n    ,                    (4) 

 ˆ ˆ, ( ) : , ,xy k n xy n kt t t t k n       ,          (5) 

 
so that ˆ x  is not function of time t (i.e., it is time-

invariant), and ˆ ( )xy   is a function only of the time-

shift τ between the considered ensembles of 
realizations. This type of process is termed a wide-
sense (also weakly, covariance or second-order) 
stationary (WSS) process, which means that its 
statistical properties up to the second-order do not 
vary over time [3, 4].  

If the process is WSS it is possible to evaluate the 
sample mean and cross-covariance using only two 

ensembles of realizations (e.g., 
1
( )tX e  and 

2
( )tX e , cf. 

Fig. 1). 
Further, if the WSS process meets the following 

conditions [4, 5]:  
 

   ˆ ˆ ˆx n x m xt e    ,                   (6) 

ˆ ˆ( ) ( )xy xx    ,                        (7) 

 
and more precisely 
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,         (9) 

 
then it is called to be an ergodic process. When the 
process is ergodic one can estimate the mean ˆ x  and 

the autocovariance ˆ ( )xx   (instead the cross-

covariance ˆ ( , )xy k nt t ) using only one time sequence 

of the event matrix  ,X e t  (e.g., 
1
( )eX t , cf. Fig. 1) 

and time averaging instead of ensemble averaging. 
However, in order to proof the stationarity and 
eventually the ergodicity of the process one must 

examine the whole event matrix  ,X e t . 

Here must be noted that the autocovariance 

function (ACvF)  ˆxx   is actually an unscaled 

variant of the autocorrelation function (ACrF) 

 ˆxx   of the process [6].  

 
3. PROBLEM STATEMENT 
 

Let’s consider a discrete or sampled and quantized 
(according the Nyquist–Shannon sampling theorem) 
continuous physically realizable and observable 
signal (e.g., time series)  
 

 [ ]sx nT ,                                (10) 

 
where {1,..., }n N   is the sample number; N  – 

number of all samples; 1
s

s
T f – sampling time 

interval and sf  is the sampling frequency. One must 

be aware that in this case there is no event matrix 
 ,X e t  but only one time series and so Eqs. (2) ÷ (5) 

cannot be used. In this light, no meaningful decision 
could be drawn about the stationarity and ergodicity 
of the underling process  ,X s t . 

From the applied signal processing point of view, 
the main question is “Does the signal [ ]sx nT  itself is 

WSS?”. A signal is said to be WSS if a time shift does 
not affects its local statistical properties up to the 
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second-order [4], or which is the same – the local 
spectral content of the signal not vary by time [7], as 
far as the ACrF (and hence the ACvF) and the power 
spectrum density (PSD) of a given signal are bounded 
by the Wiener–Khinchin theorem. 

 In the practice, the stationarity of a signal 
concerns actually its DC-value, RMS-value and its 
spectral content (by the ACvF/ACrF). Here must be 
noted that for the signals the ergodicity property is not 
defined at all.  

This problem is not trivial since it directly affects 
the proper choice of the signal processing techniques 
used in the post-processing of the signal. For instance, 
the PSD could be calculated using the ACrF or by 
Bartlett’s or Welch’s methods only if the signal is 
WSS. Otherwise, a proper time-frequency analysis 
technique should be used (e.g., Short-time Fourier 
transform) [7]. 

Moreover, the standard statistical tests for time-
series stationarity tend to fail when they are applied 
on some types of signals. As an example, in case of 
operation with a linear chirp (i.e., linear FM) signal, 
the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) 
test fails to reject the null-hypothesis that the signal is 
trend-stationary, although the chirp is a classic non-
stationary signal. This failure persists when Phillips–
Perron (PP) or augmented Dickey–Fuller (ADF) tests 
for a unit-root is used i.e., all three test undoubtedly 
but erroneously indicate that the chirp signal is 
stationary. 

Another way of estimation is to plot the signal 
oscillogram or spectrogram and perform a visual 
inspection (Eyeball test) on them. Most of the non-
stationarities could be detected by this procedure 
(however, the actually non-stationary red noise signal 
appears to be stationary in the time-frequency 
domain) but when a massive number of signals are 
under test, this approach is not relevant. 

Obviously, there is need of another approach when 
a determination of a signal stationarity is a must. 
 
4. PROPOSED SOLLUTION 

 
We proposed a novel solution of the problem, 

based on the definition for signal stationarity. If the 
signal is really covariance stationary, then the local 
statistical properties up to the second-order estimated 
for different parts of the signal are going to be 
approximately equal. Here must be noted that one 
does not try to make any decisions about the 
underlying process itself. 

The estimation algorithm is shown in Fig. 2 and 
contains: 

1) Signal detrending in order to ensure that any 
non-stationary behavior due to a linear trend is 
avoided. So actually, the algorithm checks if the 

signal is trend-stationary i.e., if an underlying trend 
can be removed, leaving a stationary signal [1]. This 
does not compromise the practical implementation of 
the stationarity estimation, since the signal detrending 
is advisable in the common case; 

2) Splitting of the signal [ ]x n  on two equal-length 

parts 1 [ ]x n  and 2 [ ]x n  (cf. Fig. 3), for the sake of 

comparison of the statistical properties of interest 
regarding these signals; 

3) Estimation of the signal stationarity about its (i) 
mean, (ii) variance and (iii) autocovariance. If these 
properties are approximately similar for the two 
partial signals 1 [ ]x n  and 2 [ ]x n , then the whole 

signal [ ]x n  is estimated as stationary. 

 

 
Figure 2. The algorithm of the proposed WSS estimation 
method. Three different parameters are under stationarity 

test – the signal mean, variance and autocovariance.  

 
Further in the paper, without loss of generality one 

assumes: 
 

,  (11) 

 
in order not to be restricted to the time-domain only 
(e.g., the signal could be spatial-related). 

[ ] [ ]; ;s n s sx nT x n t nT n hT h    
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Figure 3. Signal splitting for comparison of the mean, 
variance and autocovariance of the two parts. The last 

sample is discharged if the overall length N is odd. 
 
For the sake of the WSS-estimation we proposed 

the following modified formulae, based on the classic 
ones in [5], for calculation of the local mean, variance 
and ACvF of the signal [ ]x n : 

 

  1
ˆ , [ ]

1

Q

x
n P

Q P x n
Q P


   ,            (12) 

 

 2 21
ˆ , [ ]

1

Q

x
n P

Q P x n
Q P


   ,           (13) 

 

   
1

ˆ , , [ ] [ ]
1

Q h

xx
n P

Q P h x n x n h
Q h P







    , (14) 

 

where P and Q are the indexes of the first and last 
sample of the considered signal segment, respectively 
and h is the current hop size (shift) when the ACvF is 
calculated. Equation (14) is actually the discrete form 
of the Eq. (1) given at [8], and Eqs. (12) and (13) are 
derived similarly.  

Based on the above equations, the WSS conditions 
could be written as: 

 

1
ˆ [ ] ., ,

1

Q

x
n P

x n const Q P
Q P




 
   ,        (15) 

   
1

ˆ [ ] [ ]
1

., ,

Q h

xx
n P

h x n x n h
Q h P

const Q P






 
  

 


,     (16) 

 

2 21
ˆ [ ] ., ,

1

Q

x
n P

x n const Q P
Q P




 
   ,       (17) 

 

where the following inequality must be met: 
 

0 P Q h Q N     .                  (18) 
 

Equations (15) ÷ (17) are newly proposed, but a 
similar idea is also given in [4].  

For the split signal [ ]x n , we set 1 1P  , 

1 2
NQ    

 and 
2 12

NP    
, 

2 2 2
NQ    

, 

0,..., 12
Nh    

 (cf. Fig. 4). In this manner we will 

check whether the ACvF is only time-shift-dependent 
and independent of the particular location defined by 
P and Q, and also if the two partial signals  1 [ ]x n  
and 2 [ ]x n  obtain equal mean and variance. 

The test of the separate WSS conditions (Eqs. (15) 
and (16)) allows not only quantity but also quality 
WSS-estimation of a given signal. 
 
4.1. Mean-stationarity check 

 
For comparison of the statistical locations (mean, 

median, mode) of the two partial signals 1 [ ]x n  and 

2 [ ]x n  a special test is used – Wilcoxon rank-sum test 

(a.k.a. Mann–Whitney U test) [9, 10] which is a non-
parametric distribution-free test, instead of the classic 
Student’s t-test, since the last is appropriate choice 
only for samples with Normal probability density 
function (PDF) [1]. The test is used for assessing 
whether the two signals 1 [ ]x n  and 2 [ ]x n  come from 

PDFs with one and the same location parameters, in 
this particular case – mean. Hence, it is a location test 
for equality of mean, with null hypothesis that the two 
samples come from distributions with equal 
locations. 

   
1

ˆ [ ] [ ]
1

Q h

xx
n P

h x n x n h
Q h P







   

 
Figure 4. Graphical representation of the idea for local ACvF calculation and comparison. 
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As is described earlier, this mean-stationary check 
is actually a trend-stationary test, because of the 
initial detrending of the signal under test. 

The mean-stationarity check test is implemented 
in the Matlab-environment via the built-in function 
ranksum [11]. 
 
4.2. Variance stationarity check 
 

As a dispersion test for equality of variances the 
Brown–Forsythe test is used. The test assesses 
whether the two signals 1 [ ]x n  and 2 [ ]x n  come from 

PDFs with equal variances, based on applying of a 
specific F-test [12]. The test has been preferred 
instead of the Bartlett’s test, since the last is more 
sensitive to non-normality of the PDFs [1]. The null 
hypothesis is that the populations obtain same 
variances. 

The test is implemented in the Matlab-
environment via the built-in function vartestn [11]. 

 
 
 
 

4.3. Autocovariance stationarity check 
 
In order to check the hypothesis that the two 

signals 1 [ ]x n  and 2 [ ]x n  obtain nearly identical 

ACvFs we compare them using the similarity check 
based on their Euclidian distance (ED). 

In Cartesian coordinates, if  1 2, ,..., Na a a a  and 

 1 2, ,..., Nb b b b  are two points in Euclidean N-space, 

the distance from a to b is given by the 2L -norm i.e., 
the ED is calculated as [1] 

 

   2

2
, n n

n

Ed a b a b a b    .      (19) 

 

In the particular case: 

   
1 1 2 2 1 1 2 2

2 12 2

1

ˆ ˆ ˆ ˆ, [ ] [ ]

N

x x x x x x x x
l

Ed l l   
  



  . (20) 

 

If the ED is small enough, then the two ACvF 
sequences are nearly identical, and hence the overall 
signal’s ACvF could be considered time-invariant. 

 

Table 1. Mathematical description of some representative types of signals for test purposes.  
Test signal Signal type Signal description 

TS1 
Sine-wave 

(monocomponent trend-stationary) 
 0 0( ) sin 2mx t a b t U f t     

 
 

( ) 1.0 0.1 1.0sin 2 440

0,...,5

x t t t

t

   


 

TS2 

White noise  .P SD const [14] 

(multicomponent stationary) 

 2( ) ,x t   WN  

 
 

( ) 0,1

0,...,5

x t  

t





WN
 

TS3 

Violet noise  2PSD f  [14] 

(multicomponent stationary) 

 2( ) ,x t   VN  

 
 

( ) 0,1

0,...,5

x t  

t





VN
 

TS4 

Linear chirp 
(monocomponent non-stationary) 

22
1( ) sin 2m

f
x t U f t t

T
    

 
  

210000
( ) 1.0 sin 2 1000

5

0,..., 5

x t t t

t

    
 


 

TS5a 
 
 

TS5b 

Sequence of sine-waves 
(multicomponent non-stationary) 

 
 

1 1 1

2 2 1 2

sin 2 , 0

( ) sin 2 ,

...

m

m

U f t t t

x t U f t t t t





 


  



 

 
 

1.0sin 2 440 , 0 1
( )

2.0sin 2 440 , 1 5

t t
x t

t t





  
 

 

 
 

1.0sin 2 440 , 0 1
( )

1.0sin 2 1000 , 1 5

t t
x t

t t





  
 

 

TS6 

Red noise  2PSD f   [14] 

(multicomponent non-stationary) 

 2( ) ,x t   RN  

 
 

( ) 0,1

0,...,5

x t  

t





RN
 

TS7 
Human speech 

(multicomponent non-stationary)
Record “DR2_FRAM1_SI522” 
from the TIMIT database [15] 

TS8 
Music 

(multicomponent non-stationary)
Built-in Matlab audio sample of the 

“Hallelujah chorus” from the Handel's “Messiah”
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Figure 5.  Simulation results for different representative type of signals under test for stationarity. The mathematical 
descriptions of test signals and their properties are given in Tab. 1. TS1 – sine wave with linear trend; TS2 – white 

noise; TS3 – violet noise; TS4 – Linear chirp; TS5 – sequence of two sine waves (a) with different RMS-values and (b) 
with different frequencies; TS6 – red noise; TS7 – sample of human speech; TS8 – music sample. 

 
5. SIMULATION RESULTS 

 
The proposed signal stationarity estimation 

method is implemented in the Matlab® software 
environment as a custom-made function and a few 
computer simulations were performed in order to 
examine the performance of the method. 

The accessibility of the Matlab® simulation files 
[13] allows the presented experimental results to be 
reproduced by other researchers for sake of 
comparison, validation and further development. 

Further, for the Wilcoxon rank-sum test and the 
Brown–Forsythe test a significance level of 0.05   
is chosen. Finally, the proposed stationarity test is 
applied on all test signals and the results are shown 
on Fig. 5. As one can see, the results are in perfect 
agreement with the actual state. It is interesting to 
note that for all non-stationary signal types the KPSS-
, PP- and ADF tests show erroneous positive 

stationary decision, which confirms the need for new 
type of signal stationarity estimation method.  

 

Table 2. Euclidian distances between the autocovariance 
functions of the two halves of the split test signal.  

Test signal Stationary Autocovariance ED
TS1 

yes 

1410.10  

TS2 2  
TS3 2  
TS4 

no 
 

3.15  

TS5a 
TS5b 

19  
123  

TS6 91.5  

TS7 5.5  

TS8 6  

 
For better visualization and interpretation of the 

results, an original graphic representation named 
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“Stationary semaphore” is proposed, as one can see 
on Fig. 5. The idea is to mimic the street traffic light, 
with three light sections – for the mean stationary 
flag, for the variance stationary flag and one for the 
autocovariance. The signal is determined as WSS if 
all flags are raised i.e., if there is full “green light” on 
the semaphore (cf. TS1, TS2 and TS3 in Fig. 5). 
When the signal under test is highly non-stationary, 
all three sections are in red (cf. TS6, TS7 and TS8 in 
Fig. 5). 

The results of simulations clearly indicate the 
consistence of the proposed WSS-estimation test.  
 
6. CONCLUSIONS 
 

In the paper we presented a novel method for 
signal wide-sense stationarity estimation. It is based 
on the fact that if the signal under consideration is 
covariance stationary, then the local statistical 
properties up to the second-order estimated for 
different locations of the signal are going to be 
approximately equal. One must note that the method 
does not address the underlying process itself, but 
concerning only the corresponding signal. 

The estimation is based on splitting of the signal   
on two equal-length partial signals for comparison of 
their statistical properties of interest: mean, variance 
and autocovariance. If these properties are 
approximately equal or similar, then the initial signal 
is estimated as stationary. The comparisons are 
conducted via Wilcoxon rank-sum test for equality of 
means, Brown–Forsythe test for equality of variances 
and ACvFs comparison based on Euclidian distance, 
respectively. For experimental purposes, several 
representative stationary and non-stationary signals 
are generated and tested for stationarity and the 
results clearly indicate the consistence of the test 
method. Also, for better visualization and 
interpretation of the test results, an original graphic 
image named “Stationary semaphore” is proposed, 
which is quite intuitive. 

The proposed method for signal stationary 
estimation (including trend-stationarity) is a new 

contribution to the signal estimation theory. The 
possible applications are in the fields of statistical 
signal processing, measurement and instrumentation, 
econometrics, biomedicine etc. 
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