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Abstract: - In the present work effect of circular perforation on free vibrations of a cantilever beam is 
studied. The arrangement considered in this study is the linear variation of single circular cut-out starting 
from the support end of the cantilever. This study focuses on the dependence of the natural frequency of 
beam on various perforation parameters. Perforation parameters considered are the diameter of perforation 
and distance of perforation from the support end and geometry parameters of the beam like length, breadth, 
and thickness. An expression for natural frequency relating to above parameters was found out and 
formulated into a polynomial equation of fourth order using curve fitting techniques. The main aim of this 
research is to non-dimensionalize the dependency relation so that the results are valid for a broad range of 
dimensions of cantilever without the need for modal analysis to find natural frequencies of perforated 
cantilever beams. These non-dimensionalized expressions are further validated by predicting frequencies 
of test cases and gave error percentages in the range of 1% - 3%. The natural frequencies of perforated 
beams were predicted as the effective resonant frequency which is the ratio of the natural frequency of 
perforated beam to that of the solid beam. 
 
Keywords: - Natural frequency, Effective resonance frequency, Perforated beams, Hole-Support distance 

 
 
1. INTRODUCTION 
 

Cantilever beams have vast applications in the 
engineering world. Straight and horizontal cantilever 
beams under no load, bend due to self weight. Under 
no external excitation, the beam vibrates at its natural 
frequencies. These frequencies are the result of 
characteristics of the cantilever beam namely 
stiffness and mass properties. Resonance occurs when 
external frequency becomes equal to a body’s natural 
frequency causing the body to oscillate at higher 
amplitudes.  Resonance creates vibration, noise 
problems and can lead to major catastrophes. 
However, since cantilever beams are used in major 
structures, natural frequency determination is crucial. 

Burgemeister and Hansen introduced the term 
‘effective resonant frequencies’ [1]. They determined 
the effective resonant frequencies of perforated 
panels using Finite Element Analysis by varying 
perforation geometries. The effect of perforations in 
the panel on the density, Young’s modulus and 
Poisson’s ratio is inspected to compute the effective 
resonant frequencies. Torabi and Azadi have applied 
the Rayleigh-Ritz method to obtain natural 
frequencies of rectangular plate with a circular hole 
[2]. The plate was provided with a point support and 

effect of increasing diameter of holes and number of 
point supports were analysed. The impact of hole was 
examined by subtracting hole energy from the whole 
plate energy. 

Mali and Singru have developed an analytical 
model to predict fundamental frequencies for 
vibrations of perforated rectangular plates with 
circular holes in a rectangular perforation pattern. 
Concentrated negative mass has been used to factor 
in the effect of perforations [3]. Ghonasgi et. al. 
analysed the first three natural frequencies of multi 
perforated rectangular plates [4]. Different 
parameters like perforations, pattern of the 
perforations, aspect ratio of the plate, dimensions of 
the plate, ligament efficiency and the Mass Remnant 
Ratio (MRR) are examined so as to determine the 
most influencing factors on natural frequencies. Mali 
and Singru developed an expression for modal 
constant of the fundamental frequency for perforated 
plate experimentally using Rayleigh’s method [5]. 
The fundamental frequency can be calculated for any 
combination of ligament efficiency and perforation 
diameter. 

Perforated cantilever beams have numerous 
applications like castellated beams. In this study, 
natural frequencies are calculated using modal 
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analysis. Modal analysis is used profoundly for 
analysing dynamic properties of engineering 
structures [6,7]. A mathematical equation is 
developed using modal analysis to determine the 
natural frequency of perforated beams [8]. This 
equation encompasses physical and material 
parameters namely length, width and thickness of the 
cantilever beam, diameter of holes, hole to beam-
support distance, Young’s modulus E, Poisson’s ratio 
ν and density ρ. 
 
2. BEAM SPECIFICATIONS 
 

Material used for modal analysis is Mild Steel 
(AISI 1018). All the materials and their properties 
referenced in this paper are cited from AZoM 
(https://www.azom.com), leading online publication 
for Materials Science Community. Material 
properties for Mild Steel (AISI 1018) are specified in 
the Table 1. 

 
Table 1. Material properties 

Material properties Mild Steel (AISI 1018) 

Young’s Modulus (E) 205 GPa 

Poisson’s Ratio (ν) 0.29 

Density (ρ) 7870 Kg/m3 

 
Dimensions of the beam are specified in the     

Table 2. 
 

Table 2. Dimensions of the beam 

Length (L) 500 mm 

Width (W) 50 mm 

Thickness (t) 6 mm 

 
Perforated cantilever beam is shown in the Figure 

1. It has a hole at distance ‘x’ from support of the 
beam to the centre of the hole. This is termed as 
‘Hole-Support’ distance (abbreviated as HS 
distance). ‘d’ is the diameter of the hole. The hole is 
placed at the centre line of the top face of the beam. 
Other dimensions are similar to the solid beam i.e. 
length, width and thickness.  

Linear variation of circular perforation has one 
hole starting from support and varied till the end of 
beam given the limiting conditions. Different hole 
diameters (d) used for linear variation are 10 mm,     
15 mm, 20 mm, 25 mm, 30 mm. For different 
iterations, Hole-Support distance (HS) was varied 
from 20 mm to 480 mm with an increment of 20 mm 
per iteration. Therefore, for the beam of 500 mm 
length, 24 iterations were needed.  

 

 
Figure 1. Perforated cantilever beam 

 
The limiting conditions on the perforations are: 
a) Hole-Support distance i.e., ‘x’ has to be 

greater than radius of the perforation. 

2 2

d d
x L

    
 

,                    (1) 

b) Diameter of the hole i.e., ‘d’ has to be less 
than width of the beam ‘W’. 

0 d W  ,                    (2) 
 
3. MODAL ANALYSIS 
 

Finite Element Method (FEM), Modal analysis 
was conducted using ANSYS Mechanical APDL 
(ANSYS Parametric Design Language) 15.0 student 
version. ‘Block Lanczos’ mode extraction method 
was used to extract frequencies. Material is assumed 
to be linear, elastic and isotropic. Element type used 
was ‘SOLID186’ which is a quadratic hexahedron. 
Quadratic hexahedron gave more precise and 
accurate results than quadratic tetrahedron. Linear 
tetrahedron and linear hexahedron gave results which 
are higher than analytical results of solid cantilever 
beam by a significant amount.  

The mesh size used for the analysis was validated 
through convergence study (details of the study are 
provided in the validation section). Thus finest mesh 
size possible was used for the simulation. Solid beam 
was meshed with an element size of 0.00385m 
resulting in 26117 nodes and 12668 elements.  

Results of modal analysis for solid beam are given 
in Table 3. 

 
Table 3. Modal analysis results 

Mode Frequency, Hz Mode Shape 
1 19.903 Transverse 
2 124.62 Transverse 
3 163.88 In plane 
4 348.85 Transverse 
5 373.60 Twisting 
6 683.45 Transverse 
7 983.28 In plane 
8 1126.5 Twisting 
9 1129.5 Transverse 

10 1686.5 Transverse 
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Mesh size, number of nodes and elements for 
holes of different diameters is specified below in the 
Table 4. 

 
Table 4. Meshing Parameters 

Diameter, 
mm 

Mesh Size, 
m 

Nodes Elements 

10 0.003850 27000+ 13000+
15 0.003850 27000+ 13000+
20 0.003850 28000+ 14000+
25 0.003850 28000+ 14000+
30 0.003850 27000+ 13000+

 

Natural frequencies for all Hole-Support (HS) 
distances and diameters are listed in Table 5. 

 
Table 5. Natural frequencies (in Hz) for different HS 

distance 

HS, 
mm 

Diameter, mm 
10 15 20 25 30

20  19.662 19.362 18.922 18.320 17.530 
40  19.693 19.443 19.046 18.500 17.752 
60  19.716 19.486 19.142 18.652 17.975 
80 19.739 19.536 19.232 18.797 18.189 
100 19.761 19.585 19.320 18.936 18.397 
120 19.782 19.631 19.402 19.070 18.595 
140 19.801 19.673 19.480 19.195 18.785 
160  19.819 19.714 19.553 19.313 18.965 
180 19.836 19.751 19.621 19.425 19.136 
200 19.851 19.786 19.684 19.529 19.296 
220 19.866 19.819 19.743 19.627 19.447 
240 19.879 19.849 19.798 19.718 19.589 
260 19.892 19.877 19.850 19.804 19.722 
280 19.904 19.904 19.899 19.884 19.846 
300 19.915 19.929 19.946 19.961 19.965 
320 19.926 19.954 19.992 20.035 20.078 
340 19.936 19.978 20.035 20.106 20.187 
360 19.947 20.002 20.079 20.176 20.294 
380 19.957 20.026 20.122 20.247 20.400 
400 19.968 20.050 20.167 20.318 20.508 
420 19.979 20.076 20.213 20.393 20.619 
440 19.991 20.102 20.261 20.470 20.736 
460 20.003 20.130 20.312 20.553 20.859 
480 20.016 20.160 20.366 20.640 20.991 

 
4. METHODOLOGY 
 

Using modal analysis, natural frequencies were 
found for each specimen in which diameter of hole 
was fixed and Hole-Support distance was varied. 
These natural frequencies of each specimen (with 
fixed hole diameter) were further plotted against the 
varied HS distance. Equations obtained from these 
plots were 4th order polynomial which gave natural 

frequencies in terms of HS distance for a particular 
value of hole diameter. 

To make the equation valid for all diameters, 
coefficients of each powers of the equation i.e., power 
varying from 0, 1, 2, 3, 4 were plotted against the hole 
diameters. The curve fitting equations obtained gave 
coefficient values for each power in terms of any 
value of diameter given. These equations obtained for 
coefficients were substituted as the coefficients in the 
original 4th order polynomial obtained. Thus the 4th 
order polynomial now gives natural frequency for any 
value of hole diameter and the HS distance. The 
equation obtained is given below:  

 

4 3 2
4

4 3 2
3

4 3 2
2

2.0583 16 2.6475 14 8.6433 13

1.0888 11 4.4977 11
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 (3) 

 
5. NON-DIMENSIONALISATION 
 

However, the equation found only allows the hole 
diameter and HS distance to be varied. It does not take 
into account other material and geometric properties. 
The aim of this study is to include all parameters to 
predict the frequency without the need for FEA. 

Parameters left to be involved are: Hole-Support 
distance (x), Diameter of hole (d), Length of beam 
(L), Width of beam (W), Thickness of beam (t), 
Young’s modulus (E), Density (ρ), Poisson’s Ratio 
(ν, Optional for Transverse Vibrations) 

Since only transverse vibrations are to be 
considered, Poisson’s Ratio is not important. It has 
significance when longitudinal vibration frequencies 
are to be predicted or when transverse vibrations with 
shape functions are to be analysed. 

Non-Dimensionalising [9,10] helps to simplify 
and parameterize the equation so that it can 
accommodate any values of parameters listed above. 
Thus to decrease the number of variables and to 
involve the effect of all the above parameters, some 
non-dimensional parameters are defined. They are as 
follows: 

Non-dimensional HS distance: 
x

L
 
 
 

 hereafter 

referred to as x  
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where x = HS distance and L = length of beam 

Non-dimensional Hole diameter: 
d

W
 
 
 

 hereafter 

referred to as d  
where d = hole diameter and W = width of beam. 

Non-dimensional Frequency: 
*

f

f

 
 
 

 hereafter 

referred to as f  

where f = frequency of perforated cantilever beam 
and f* = frequency of solid beam i.e. reference 
cantilever beam 

Burgemeister and Hansen have termed the Non-
dimensional frequency as ‘effective resonance 
frequency’ [1]. It is defined as the ratio of modal 
resonance frequency of perforated beam to the 
resonance frequency of the corresponding solid beam. 

Revisiting the analytical equation of natural 
frequency for solid cantilever beam tells that, 

: /
eff

n
eff

K
Frequency rad s

M
         (4) 

where effK = effective stiffness of cantilever beam,  

            effM  = effective mass of beam 

3

3
eff

EI
K

L

 
 
 

      (5) 

where E = Young’s modulus, I = Area moment of 
inertia, L = Length of Beam 

33

140effM m               (6) 

where m = self mass of the beam 
This depicts that Young’s Modulus and thickness 

are taken care by Keff and I (Area moment of Inertia). 
The HS distance is divided by 500 to get x and all the 
frequencies are divided by 19.903 which is f* for 
solid cantilever beam to get f .  

The above same method is followed to obtain the 
equation for predicting frequency. Graph of f  

against x  is plotted in Figure 2. 
 

 
Figure 2. Effective resonance frequency vs. x  

Rewriting the data in Table 5. with the above 
modifications. 

 
Table 6. Effective resonance frequencies ( f ) 

x  
Perforation diameter, mm 

10 15 20 25 30 

0.04 0.9879 0.9728 0.9507 0.9205 0.8808 
0.08 0.9894 0.9764 0.9569 0.9295 0.8919 
0.12 0.9906 0.9790 0.9618 0.9371 0.9031 
0.16 0.9918 0.9816 0.9663 0.9444 0.9139 
0.20 0.9929 0.9840 0.9707 0.9514 0.9243 
0.24 0.9939 0.9863 0.9748 0.9581 0.9343 
0.28 0.9949 0.9884 0.9787 0.9644 0.9438 
0.32 0.9958 0.9905 0.9824 0.9704 0.9529 
0.36 0.9966 0.9924 0.9858 0.9760 0.9615 
0.40 0.9974 0.9941 0.9890 0.9812 0.9695 
0.44 0.9981 0.9958 0.9920 0.9861 0.9771 
0.48 0.9988 0.9973 0.9947 0.9907 0.9842 
0.52 0.9994 0.9987 0.9973 0.9950 0.9909 
0.56 1.0001 1.0001 0.9998 0.9990 0.9971 
0.60 1.0006 1.0013 1.0022 1.0029 1.0031 
0.64 1.0012 1.0026 1.0045 1.0066 1.0088 
0.68 1.0017 1.0038 1.0066 1.0102 1.0143 
0.72 1.0022 1.0050 1.0088 1.0137 1.0196 
0.76 1.0027 1.0062 1.0110 1.0173 1.0250 
0.80 1.0033 1.0074 1.0133 1.0209 1.0304 
0.84 1.0038 1.0087 1.0156 1.0246 1.0360 
0.88 1.0044 1.0100 1.0180 1.0285 1.0419 
0.92 1.0050 1.0114 1.0205 1.0327 1.0480 
0.96 1.0057 1.0129 1.0233 1.0370 1.0547 

 
Basic curve fitting is done using MATLAB. All 

the plots are curve fitted with 4th degree polynomials 
to mitigate error as much as possible. The equations 
obtained at different hole diameters are given below: 

 
4 3
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2 1

4 3
@ 15

2 1
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    (7) 
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Table 7. Coefficients of ( )ix (where i = 0, 1, 2, 3, 4) 

d  i = 4 i = 3 i = 2 i = 1 i = 0 

0.2 0.0059 0.0043 -0.0274 0.0371 0.9865 

0.3 0.0088 0.0188 -0.0668 0.0839 0.9698 

0.4 0.0186 0.0256 -0.1120 0.1487 0.9453 

0.5 0.0637 -0.0389 -0.1163 0.2213 0.9121 

0.6 0.1628 -0.2225 -0.0389 0.2918 0.8691 

 

Now the ( )ix (where i = 0, 1, 2, 3 and 4) 

coefficients are plotted against d  
 

 
Figure 3. ( )ix coefficients vs. d  
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  (8) 

 

All the above graphs are curve fitted with 4th 
degree polynomial to mitigate error as much as 
possible.  

 
4 3 2 1

4 3 2 1 0( ) ( ) ( ) ( )f C x C x C x C x C        (9) 

 
Substituting the above equations in place of ( )ix  

Coefficients in the f   vs. x graph, the equation 

obtained is: 
Proposed equation: 
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 (10) 

 
Matrix form of above equation is given below: 

4

3

2

1

0
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(11) 

 
This equation was validated using MATLAB. The 

above equation predicts mode 1 frequencies 
(Fundamental Natural Frequency) of beam with any 
dimensions and material properties given that the 
limiting conditions are followed. Surface plots for the 
above equation are given in Figure 4 and 5. 

 
Figure 4. Surface plot 1 

 
Figure 5. Surface plot 2 
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The black lines in the surface plots represent all 
points which have same f  for different x and d

values, which means to achieve a particular effective 
resonance frequency multiple sets of x and d exist.  

 
6. VALIDATION 
 

Validation of the results obtained from proposed 
approach i.e., equation no. 10, is given in this section. 
Validation is carried out by considering two 
scenarios, first within the test scope and second 
outside the test scope and also convergence study is 
discussed in this section. The summary of the results 
obtained from validation study is given in Table 8. 

‘Within the test scope’ refers to taking values of 
material properties used for formulating the proposed 
equation i.e. AISI 1018 Mild Steel. ‘Outside the test 
scope’ refers to the values of material properties other 
than AISI 1018 Mild Steel. 

 
 Example 1: (Within the test scope) 

Mild Steel (AISI 1018) 

x = 350 mm, L = 1000 mm,  d = 35 mm, W = 50 mm 

Equation no. 10 gives f  = 0.9371 => f = 0.9371 x f* 

= 0.9371*4.9627 = 4.6505617 Hz 

APDL gives 4.8003 Hz 

Error = 3.11% 
 

 Example 2: (Within the test scope) 

Mild Steel (AISI 1018) 

x = 100 mm, L = 250 mm, d = 30 mm, W = 50 mm 

Equation no. 10 gives f  =0.9695 => f = 0.9695 x f* 

= 0.9695*79.988 = 77.548366 Hz 

APDL = 75.204 Hz 

Error = 3.11734% 

 Example 3: (Outside the test scope) 

Nickel Aluminium Bronze (UNS C95800) 

x = 500 mm, L = 680 mm, d = 40 mm, W = 50 mm 

Density = 7640 kg/m3 

Young’s modulus = 117 GPa 

Poisson’s Ratio = 0.34 

Equation no. 10 gives f  = 1.0387 => f = 1.0387 x f* 

= 1.0387*8.2256 = 8.57509172 Hz 

APDL gives 8.4760 Hz 

Error = 1.169% 

 Example 4: (Outside the test scope) 

AISI 1055 Carbon Steel (UNS G10550) 

x = 500 mm, L = 680 mm, d = 40 mm, W = 50 mm 

Density = 7850 kg/m3 

Young’s modulus = 200 GPa 

Poisson’s Ratio = 0.285 

Equation no. 10 gives f  = 1.0387=> f = 1.0387 x f* 

= 1.0387*10.627 = 11.0382649 Hz 

APDL gives 10.913 Hz 

Error = 1.148% 

Note: f* values in the following cases are found using 
ANSYS APDL for accuracy 

Table 8. Percentage error calculation* 
Test 
cases

Within the test 
scope

Outside the test 
scope

x, mm 350 100 500 500 
d, mm 35 30 40 40 
W, mm 50 50 50 50 
L, mm 1000 250 680 680 
E, GPa 205 205 117 200 

ρ, kg/m3 7870 7870 7640 7850 
FEM 
(Hz)

4.8003 75.204 8.476 10.913 

Proposed 
Equation 
(10) (Hz)

4.6505 77.548 8.575 11.038 

% Error 3.120 3.116 1.168 1.145 

 
All the FEM simulations were based on the results 

of the convergence study which yielded the finest 
mesh size. Meshing element used was SOLID 186 
which is a 20 node quadratic hexahedron. 
Convergence can be seen in Figure 6. 

Figure 6. Convergence Study 
 

Finest mesh was taken as 0.00385 m beyond 
which, the number of nodes crossed 32000. In the 
student version of ANSYS 15.0, maximum number of 
allowable nodes is 32000. When 0.00385 m was used 
as mesh size it resulted in 26117 nodes and 12668 
elements. 
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7. RESULTS AND DISCUSSIONS 
 

Effective resonance frequency is plotted against 
x for different hole diameters in Figure 2. The 

intersection points of the curves are shown below in 
Figure 7. 

 

Figure 7. Intersection of curves 
 
For the range of x  from 0.55 to 0.6, the effective 

resonance frequency varies from 0.996 to 1.003 
which is approximately equal to 1. Therefore, for the 
range of x  from 0.55 to 0.6, frequency of perforated 
beam is approximately equal to the frequency of 
corresponding solid beam.  

From the surface plots (Figure 4) it can be 

observed that for a particular value of d  the effective 

resonance frequency f  increases with x . At lower 

values of d , the change of x does not influence f  as 

much as it influences when d value is high. At lower 

values of x  i.e., 0.2 < x  < 0.6, the change of  d  has 

more influence on f . Also, this change in d   has 

negative influence on f . But at higher values of x  

i.e., 0.6 < x  < 0.8, the change of d  has comparatively 

less influence on f .  Besides this, in the range of 0.6 

< x  < 0.8, d  affects f  positively.  It can also be seen 
that the absolute variation in effective resonance 
frequency is higher with change in x  as compared to 

the change in d . 
 

8. CONCLUSIONS 
 

This study deals with proposing an equation for 
predicting the natural frequency of perforated 
cantilever beams given the material properties and 
geometric parameters. It is valid for a single 
perforation placed at any distance on the centre line 
of the beam. Comparing the results of the proposed 
equation with ANSYS APDL gave percentage errors 
in the range of 1% - 3%.  

For a particular range of x , the effective 
resonance frequency is approximately equal to one. 

d  has a positive impact on f  when x  is kept 

constant whereas x has a combined effect i.e., both 

positive and negative on f  when d  is kept constant. 

Also x  has more influence on f  than d . 
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