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Abstract: - The paper presents the topic of the representation of the hysteretic loops raised on the basis of 
the variation of the linear viscoelastic force 𝑄ሺ𝑥ሻ ൌ 𝑐𝑥ሶ ൅ 𝑘𝑥 depending on the variation of the 
instantaneous displacement x = x(t) of the linear dynamic system m, c, k dynamically excited with a 
harmonic excitation force F = F(t) = F0 sint. The linear Voigt-Kelvin dynamic model is characterized by 
the mass m, the viscous amortization c and the elastic constant k, being driven by the harmonic force in the 
F0 amplitude and the  pulsation. The representation of the Q - x hysteretic loop is made by an ellipse both 
by numerical testing and by experimental testing. 

In order to optimize the energy dissipation capacity in the dissipative element, linear with the 
amortization constant c, representations of the parameterized ellipse families are required. Thus, we have 
to keep in mind that in the technological processes activated by vibration, the physical and mechanical 
parameters of the processed material may be modified, for example c, k, as well as the  pulsation of the 
dynamic excitation. 

It emerges that an analytical and graphic evaluation is required in order to highlight the parametric 
changes on the dynamic response and of the dissipated energy. 

Consequently, for some real cases of processing in industry and constructions, the values of the physical 
and mechanical parameters were chosen, as well as the modality of their variation so as to be able to 
illustrate, as realistically as possible, the dynamic behaviour of the linear elastic system m, c, k dynamically 
excited with the given harmonic force. 
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1. INTRODUCTION  
 

For the m, c, k linear dynamic model we define the 

fraction of the critical amortization km
c

2
  and 

the harmonic excitation force with the F0 = 2
0 rm , 

where rm0 is the static moment of the dynamic 

unbalance system at rotation with   angular velocity, 

the same as the excitation pulsation so that                    
F=F(t) = F0 tsin . 

The main objective of this study is to represent the 
families of curves for the three significant regimes  
<1 ante-resonance,  = 1 resonance and >1 post-

resonance, where 
n
  , with 

m

k
n  when the 

parameter of the elliptic curves family is, in turn, k, c, 
 with discreet variations in accordance with the 
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requirement of the vibration-activated technological 
process. 

In this context, the significant ellipses, their 
remarkable points, as well as the distribution of the 
ellipse set with the intersection points for the 
representative panel of the parameterized family are 
analysed. 

In this paper there will be used calculation and 
analytical relations developed both by the author of 
this paper as well as by other authors with the 
corresponding references to the bibliography. 

The following notations will be used: own 

pulsation 
m

k
n  ; relative pulsation 

n
  the 

angle of loss in the viscoelastic system (c, k) noted 

with  2
k

c
. The physical units used in the 

paper will be specified both for the dynamic 

excitation F=F(t) = F0 tsin = tsinrm 2
0 , as well 

as for the (m, c, k) system where m = 104kg,              
50 rm  kgm, and the c, k measurement units are 

discreetly variable. 
For each situation, there will be analysed and 

graphically displayed the A() displacement 
amplitude according to the discrete variable k or c 
parameter as well as the hysteretic loops Q - x and    F 
- x with their significant points and their specified 
directions for the dynamic regimes of ante-resonance 
with  <1, resonance with  = 1 and post-resonance 
with > 1. 

 
2. EVALUATION OF LINEAR 
VISCOELASTIC FORCE Q(x) IN 
DYNAMIC HARMONIC REGIME 
 

The m, c, k dynamic model of the harmonic 
dynamic excitation test equipment by the force          

F(t) = tsinrm 2
0 , is represented in figure 1, where 

the reaction 𝑄ሺ𝑥, 𝑥ሶሻ is displayed as a result of the 
viscoelastic system deformation (c, k) for the 
instantaneous displacement x = x (t) and the 
instantaneous speed 𝑥ሶ ൌ 𝑥ሶሺ𝑡ሻ 

 
Figure 1. Dynamic diagram of the system (m, c, k) 
 
The differential equation of motion is given as: 
 

                           𝑚𝑥ሷ ൅ 𝑐𝑥ሶ ൅ 𝑘 ൌ 𝐹ሺ𝑡ሻ                  (1) 
 

with the solution x = A sin (t - ), where A is the 
amplitude of the displacement, and  the phase shift 
between the instantaneous displacement x and the 
instantaneous force F = F(t). 

Force 𝑄ሺ𝑥, 𝑥ሶሻ may be written down either as 
internal force according to c, k, either as reaction 
according to F(t) and 𝑚𝑥ሷ , as follows: 

    𝑄ሺ𝑥, 𝑥ሶሻ ൌ 𝑐𝑥ሶ ൅ 𝑘𝑥 ൌ 𝐹ሺ𝑡ሻ െ 𝑚𝑥ሷ   (2) 
 
2.1. Linear viscoelastic force variance 
analysis Q(x) 
 

For the dynamic test system (m, c, k) excited by 
the harmonic force F (t), the significant parameters 
are the displacement amplitude A = A () and the 
viscous-elastic reaction force Q = Q (x) given by the 
relations: 

    

  2222

2
0






cmk

rm
)(A


   (3) 

 

     22 x)(Ackx)x(Q     (4) 

 
where x = x(t) is the instantaneous displacement of 
the mass body m. 
 
2.1.1. Variation of rigidity k 

 
This study will be based on the following 

parametric values: m = 104 kg,  m0r = 5kgm,                    
c = 5 105Ns/m,  = 100 rad/s and the discrete 
variation of k with the corresponding values for  as 
follows: k1=1/9108 N/m, 1= 3, k2=1/4108 N/m, 
2= 2, k3=108 N/m, 3= 1, k4=2108 N/m,                    
4= 0,7, k5=4108 N/m, 5= 0,5. 

The amplitude variation at the change of k and for 
 = 100 rad/s is A (, k) is represented in figure 2. 

 

 
Figure 2. Variation of the amplitude according to                     

 = 100 rad/s and for the continuous modification of k 
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For the hysteretic loops Q - x it is used relation (4) 
individualized by parameter k, as 

 

           22 x)k,(Ackx)x,k(Q     (5) 

 
which expresses the family of ellipses to the discrete 
variance of k [ k1,… k5] and the continuous variation 
of x[-A(,k), +A(,k)].  The graphical 
representation of the ellipse family is shown in figure 
3. Table 1 shows the values of the ellipse areas values 
equivalent to the dissipated energy Wd  ellipse area 
expressed in J. 

 

 
Figure 3 Family of ellipses Q - x 

 
Table 1 shows that the maximum area of the 

ellipse of 157.07 corresponding to the maximum 
dissipated energy of 157.07 J for  = 1 at resonance, 
as shown in figure 3 as well.  
 

Table 1 Ellipses’ areas for  =100 rad/s 
k[N/m] 

 1/9108 1/4108 108 2108 4108 

3 37.75    
2  48.33    
1   157.07  
0,7    31.41
0,5     4.24

 
It is noted that all ellipses, from  = 0.5 to               

 = 3, are inclined with the large axis only in 
trigonometric quadrant I. 

 
2.1.2. Variation of viscous amortization c 

 
The following parametric values will be used for 

the case study: m =104 kg, m0r = 5kgm, k = 4 105N/m, 
 = 100 rad/s. It emerges n = 200 rad/s,  = 0,5. The 
variation of viscous amortisation c is obtained on the 

basis of the relation kmc 2  and of the series of 

discrete values of the fraction from the critical 
amortisation , as:. 1=0.05,  2=0.10,  3=0.15,  
4=0.20, 5=0.25.   In this case the series of discrete 
values for c is as follows: c1 = 2 105Ns/m,                     
c2 = 4 105Ns/m, c3 = 6 105Ns/m, c4 = 8 105Ns/m,                    
c5 = 10 105Ns/m. 

The variation of the amplitude A (, c) according 
to the continuous variation of c and the discrete value 
of  = 100 rad/s is represented in Figure 4. 

 

 
Figure 4 Variation of A according to the continuous 

modification of c, for  = 100 rad/s 
 

The hysteretic loops Q - x for the discrete variation 
of c, may be described based on relation (4), 
individualized by c, as follows: 
 

          22 ),(),( xcAckxxcQ     (6) 

 
which expresses the family of parameterized ellipses 
by the discrete variation of c and the continuous 
variation of x[-A(,c),+A(,c)] represented in 
figure 5. 

 

 
Figure 5 Family of ellipses with parameter c 

 
Table 2 shows the values of o the ellipse areas with 

dissipated energies for the discrete values of c. 
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Table 2. Ellipses areas for  =100 rad/s and  =0,5 

 
2.1.3. Variation of the excitation pulsation  

 
The case study for the dynamic model is 

characterized by system parameters as follows: m 
=104 kg, m0r = 5kgm, k = 4 105N/m, c = 5 105Ns/m, 
 = 200 rad/s.  

The discreet variation of the pulsation is given by 
the value string as follows:1 = 100 rad/s, 1= 0,5,  
2 = 150 rad/s, 2= 0,75, 3 = 200 rad/s, 3= 1, 4 
= 300 rad/s, 4=1,5, 5 = 400 rad/s, 5= 2. 

Amplitude A() is given by relation (3) for the 
continuous variation of pulsation  and it is 
represented in figure 6. 

 
Figure 6. Variation of the amplitude according to the 

continuous modification of pulsation  
 

The family of elliptical hysteretic loops is given 
by the parameter , based on relation (4), în 
according to , may be set as: 

 

         22 )(),( xAckxxQ              (7) 
 

 
Figure 7. Family of elliptic hysteretic loops Q – x 

 

with the discrete variance of  and the continuous 
variation of x[-A(),+A()]. The graphic 
representation is given in figure 7. 
 

Table 3 shows the areas of the ellipses in figure 7, 
which corresponds to the energy dissipated per cycle 
for each individual pulsation from 1 = 100 rad/s to 
5 = 400 rad/s.  

 
Table 3. Ellipses’ areas 

 
It is found that for  = 1, at resonance, the ellipse 

has the largest area and hence the maximum 
dissipated energy. In this case, the resonance ellipse 
circumscribes all ellipses in ante-resonance  <1 and 
post-resonance  >1. Also, all ellipses are inclined in 
the trigonometric quadrant I. 

 
2.1.4. Specific parameters of the hysteretic 

elliptic loop Q – x 
 

The remarkable points for the Q - x ellipse 
correspond to the intersection of the ellipse with the 
coordinate axes, the maximum values of force Q (x) 
and the tangent points of the ellipse with straight lines 
parallel to the coordinate axes. Significant parametric 
values are also the angles formed by the significant 
straight or tangent lines to the elliptical loop in 
relation to the axes of the reference system  Q - x. 

Figure 8 shows the hysteretic elliptical loop for 
>1, where all the remarkable points and 
characteristic angles are represented. The evaluation 
was made for the following measuring points:                 
m =104 kg, m0r = 5kgm, k = 4 105N/m,                    
c = 5 105Ns/m,  = 300 rad/s, n = 200 rad/s,                
 = 1,5, c = 5 105Ns/m. 

 
a) Coordinates of the remarkable points B, C, M, I 

 
Point B corresponds to Q when QB = 0, and based 

on relation (4) it emerges 

                 
21 




 AxB            (8) 

 
Point C corresponds to the case when x = xc = 0, 

and based on relation (4) we have 
                 kAAcQQc  0             (9) 

 
Point M corresponds to the case of the maximum 

value of Q, that is for 0' 
dt

dQ
Q  or 
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22
'

xA

x
ckQ


  , from where  

21

1


 AxM

 

where 
k

c  . Thus, the maximum force emerges as 

    2max 1),(   kAQxQ MM        (10) 

for 

             
21

1


 AxM

             (11) 

Point I correspond to the vertical tangent for 
Axx I  , from where it emerges 

                           kAQI                           (12) 

that is the maximum elastic force, with the 
specification that the linear elastic force   kxxQ  . 

 
b) The angular characteristics of the tangents to 

the ellipse in the remarkable points. 
 
Tangent to the ellipse in point B emerges for         

x = xB from the condition 

          21','   k
dt

dQ
QxQ

Bx
BB   

or 

                21,'   ktgxQ B             (13) 

 
Tangent to the ellipse in point C shall be 

obtained for x = xC=0 from the condition 

             k
dt

dQ
QQ

x
CC 

0

',0'   

or 
                   ktgQ C  ,0'              (14) 

 
Tangent to the ellipse in point M, for                 x 

= xM =
21

1


 A  it is obtained the maximum value 

of Q as 

            2
0

max 1  kAQQM              (15) 

 
Tangent in point M is given by the relation 

            
22

'
M

M
M

xA

x
ckQtg


               (16) 

where by replacing Mx
21

1


A , we obtain 

0tg , with 0 . 

 
Tangent in point I is given by the relation 

              
22

'
I

I
I

xA

x
ckQtg


                (17) 

 

where by replacing Ix A  it emerges 

          tg , with 
2

  .            (18) 

Figure 8 shows all the previously established 
parametric measures. 
 

 
Figure 8. Hysteretic elliptic loop for  >1 

 
 

2.2. Intersection of the hysteretic ellipses 
 
The intersection points of two ellipses of the 

family of elliptical hysteretic loops are obtained for 
the condition Qi = Qj , where i is the value of the 
physical parameter of the ellipse of order i, and j is 
the discrete value of the same physical parameter pj 
of the j order ellipse. 

 
2.2.1. Family of ellipses with k parameter. 

a) Dynamic regime in ante-resonance         
        <1 

For two distinct values of the rigidity, that is at ki  
and respectively kj  forces Qi  and Qj  have the 
following expresses 

 

    22, xkAcxkkQ iiiii           (19) 

 

    22, xkAcxkkQ jjjjj           (20) 

 
From the condition Qi(, ki) = Qj(, kj) there 

emerge the  abscissae  xA1, x’A1, xA2  and x’A2, with the 
ordinates corresponding to the forces, respectively 
QA1, Q’A1, QA2  and Q’A2, represented in figure 9. The 
parametric values for which the two ellipses were 
raised are as follow: m = 104 kg, m0r = 5kgm,                   
c = 5 105Ns/m,  = 100 rad/s, k4=2108 N/m, 4= 0,7, 
k5=4108 N/m, 5= 0,5. In this case for points A1, A’1, 
A2 and A’2, it emerges: 
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Figure 9. Intersection of ellipses k4 and k5                        

in ante-resonance 
 

a) Dynamic regime in post-resonance  >1 
The numerical values of the dynamic model for 

two ellipses parameterized by k1 and k2 are as follows: 
m = 104 kg,  m0r = 5kgm, c = 5 105Ns/m,  = 100 
rad/s, k1=1/9108 N/m, 1= 3, k2=1/4108 N/m, 5= 2. 
In this case the intersection points of the two ellipses 
are P1 , P’1, P2  and P’2, with the following 
coordinates: 
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Figure 10. Intersection of the ellipses k1 and k2                

in post-resonance 

Figure 10 presents the intersection points of the 
ellipses k1 and k2 in post-resonance for 1= 3 and 
respectively 5= 2. 
 
2.2.2. Family of ellipses with parameter c 

For the case study we will use the parametric 
values of the dynamic system, as follows: 
m = 104 kg, m0r = 5kgm,  = 100 rad/s, k=2108 N/m, 
= 0,7; , c1 = 5 105Ns/m, c2 = 10 105Ns/m. 
     Forces Q1  and Q2  are given by the relations: 
 

                 2
1

2
1111 xcAckxcQ            (21) 

 

                 2
2

2
2222 xcAckxcQ          (22) 

 
From the condition Q1(c1 ) = Q2 (c2 ) it emerges 
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where A1  and A2 are 
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Based on the relations (21)....(25) and on the 

previously established parametric values, we have the  
following coordinates for the intersection points: 
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Figure 11. Intersection of the ellipses c1 and c2                                

for the ante-resonance regime =0.7 
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Figure 11 presents the intersection points for 
ellipses c1  and c2 . 
 
2.2.3. Family of ellipses with parameter  

The numeric values of the parameters of the 
dynamic model are: m = 104 kg,  m0r = 5kgm, c = 5 
105Ns/m, k=108 N/m n = 100 rad/s, 1 = 200 rad/s, 
2= 2, 2 = 300 rad/s, 2= 3. In this case forces Q1  
and Q2  have the expressions: 
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with amplitudes A1  and A2  as 
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From the condition    2211  QQ  we obtain 
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 Based on the relations (26)…(30) it emerges 
the coordinates of the intersection points R1 , R’1, R2 
and R’2, as follows : 
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Figure 12 shows ellipses 1  and 2 with the 

intersection points for the post-resonance regime. 

Figure 12. Intersection of ellipses  ωଵand ωଶ 
 for the post-resonance regime  

 
3. CONCLUSIONS 
 

For a complete dynamic system (m, c, k) with 
linear Voigt-Kelvin viscoelastic connection with the 
dynamic harmonic excitation by force                    
F(t) = 2

0 rm sint, the parametric analysis of the 

dynamic response and of the hysteretic loop             
families, the following conclusions may be 
formulated: 

a) the linear dynamic response in displacement is 
expressed by the amplitude A according to the 
continuous or discreet variation of the physical 
parameters c, k or of the kinematic excitation 
parameter , according to the graphical 
representations in figures 2, 4 and 6. 

b) the families of hysteretic loops are 
characterized by the set of ellipses determined by 
physical parameters with discreet variation, in linear 
elastic and linear viscous regime. Thus, there were 
represented families of ellipses according to the 
physical parameters k, c and  for dynamic regimes 
in ante-resonance  <1 or post-resonance > 1. 

c) the ellipses’ areas, being equal to the energy 
dissipated in the viscous linear element, constitute a 
significant criterion in the evaluation of the energy 
dissipation process for the dynamic harmonic system 

excited with force F(t) = 2
0 rm sint. 

d) the hysteretic loop of elliptical shape is 
analytically and graphically characterized based on 
the remarkable points and on the angles of the straight 
lines tangent to the ellipse in the points of physical 
significance. 

e) the intersection points of the ellipses show that 
for some dynamic regimes, there may be identified 
remarkable individual properties of the system (m, k, 
c) excited by the harmonic force F(t). 
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