
 

RJAV vol 18 issue 2/2021                                          104                                                        ISSN 1584-7284 

An Analytical Solution of Dynamic Vibration Absorber to Suppress the 
Vibration of a Pendulum Structure Subjected to Moving Loads Caused 
by A Hanging Point 
 
Duy - Chinh NGUYEN 
Hung Yen University of Technology and Education, duychinhdhspkthy@gmail.com 
 
 
Abstract: - In reality, there are many real structures are shaped like a pendulum structure, such as ropeway 
carriers, cranes, balloon baskets, boats, etc. These pendulum structures are often hung on moving points 
such as cable, balloons, water surface, etc. It is this movement of this hanging point that generates an inertial 
force acting on the pendulum structure and produces vibrations. Therefore, this study proposes a new 
approach, in which a pendulum structure installs a dynamic vibration absorber (DVA) subjected to moving 
loads caused by a hanging point. The new studies are performed as follows: In the first step, the differential 
equations of motions for the pendulum structure and DVA are established, this is an extremely important 
step for designing the DVA's optimum parameters to suppress vibration of the pendulum structure. In the 
next step, the minimum quadratic torque method is used to determine the DVA's optimum parameters. The 
DVA's optimum parameters are obtained explicit analytical solutions. In order for the scientist can 
advantage to find the DVA's optimum parameters to suppress vibration of the pendulum structure. The last 
step, the vibrations of the system are simulated by using Maple software in order to evaluate the effect of 
reducing vibration for the pendulum structure. Simulation results show that the vibration of the pendulum 
structure is efficient suppression by using optimum parameters of the DVA. 
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1. INTRODUCTION 
 

One of the most popular methods of dissipating 
vibration energy in main structures is to use a 
dynamic vibration absorber (DVA) or a tuned mass 
damper (TMD), which consists of masses attached to 
main structures through springs and dampers, they 
have been widely used to eliminate vibration for 
many mechanical devices and engineering structures.  

Wong and Cheung [1] have designed the optimal 
DVA to eliminate vibration for the structure subjected 
to moving loads caused by a ground. Chung et al. [2] 
studied an optimal design theory for a friction 
pendulum tuned mass. Morga and Marano [3] 
proposed the reduction of vibrations for the slender 
structures. Elias and Matsagar [4] introduced single 
tuned mass damper for high-rise building. Xiang and 
Nishitani [5] presented a pendulum-type 
nontraditional tuned mass damper for a system 
equipped.  

Love et al. [6] have designed the DVA to reduce 
vibration for the tall buildings. Chen et al. [7] studied 
bridge-based designed TMD on the trains. Chinh [8, 
12] have introduced a symmetric TMD to eliminate 
torsional vibration of the machine shaft.  

Zhang [9] has provided explicit formulas for 
optimal tuning of the TMD for wind turbine blades. 
Chinh [10] gave the optimal parameters of DVA to 
control torsional vibration of a rotating shaft. The 
optimal parameters of TMD have been found by 

Chinh [11] to suppress vibrations of an inverted 
pendulum has two degrees of freedom. 

 

 
Figure 1. Model real structures of a ropeway carrier 

In reality, there are many real structures are shaped 
like a pendulum structure, such as ropeway carriers, 
cranes, balloon baskets, boats, etc. For example, the 
model real structures of a ropeway carrie is shown in 
Figure 1.  

These pendulum structures are often hung on 
moving points such as cable, balloons, water surface, 
etc. It is this movement of this hanging point that 
generates an inertial force acting on the pendulum 
structure and produces vibrations. Therefore, this 
study proposes a new approach, in which a pendulum 
structure installs a dynamic vibration absorber (DVA) 
subjected to moving loads caused by a hanging point.  

Vibration equations are formulated for the system; 
this is an extremely important step for designing the 
DVA's optimum parameters to suppress vibration of 
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the pendulum structure. In particular, the DVA's 
optimum parameters are obtained explicit analytical 
solutions.  

In order for the scientist can advantage to find the 
DVA's optimum parameters to suppress vibration of 
the pendulum structure subjected to moving loads 
caused by a hanging point.  

Finally, the vibrations of the system are simulated 
by using Maple software in order to evaluate the 
effect of reducing vibration for the pendulum 
structure.  

Simulation results show that the vibration of the 
pendulum structure is efficient suppression by using 
optimum parameters of the DVA. 
 
2. MODELING OF A PENDULUM 
STRUCTURE AND VIBRATION 
EQUATIONS  
 
2.1. Modeling of a pendulum structure 
attached with DVA 
 

 
Figure 2. Modelling of a pendulum structure attached 

with DVA 
Figure 2 shows a pendulum structure attached with 

a dynamic vibration absorber (DVA). The DVA with 
the mass of m, the spring constant of k, and the 
damping constant of c. The position of the DVA with 
respect to a hanging point as L1. The mass and length 
of the pendulum structure are M and L2, respectively. 
Let ρ  denote the displacement of the hanging point. 

Figure 3 shows the system has 2 degrees of 
freedom. Denote the angular variation of the 
pendulum structure as ϕ. Denote the displacement of 
DVA with respect to the pendulum structure as s.  
 

 
 

Figure 3. The pendulum structure and the DVA with two 
degrees of freedom 

 
2.2. Vibration equations 

 
The pendulum structure with DVA has 2 degrees 

of freedom: S and ϕ. The Lagrange equations are 
given by 

 
d (T-V) (T-V) 0
dt SS S
d (T-V) (T-V) 0
dt

( )

( )

− =

− =
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Consider the coordinate system as shown in Figure 

2, the positions of the pendulum structure (xM, yM) 
and the DVA (xm, ym) are determined as 

 
M 2 m 1

M 2 m 1

x L sin ; x L sin Scos
y L cos ; y L cos Ssin

= ρ − ϕ = ρ − ϕ+ ϕ
= ϕ = ϕ+ ϕ

 (2) 

 
* The kinetic energy of the pendulum structure 

with DVA is 
 

2 2 2 2
M M m m

1
m

2
1T M(x y ) (x y )
2

= + + +     (3) 

 
* The potential energy of the pendulum structure 

with DVA is 
 

2
2 M 1 mS

1V k Mg(L y ) mg(L y )
2

= + − + −  (4) 

 
* The energy dissipation function of the pendulum 

structure with DVA is 
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21 cS
2

Φ =   (5) 

Using (1) to (5) and ignoring the high power terms, 
the motion equations of the pendulum structure with 
DVA are written as follows 

 
2 2
2 1 1 2 1

2 1

1

(ML mL ) mL S (ML mL )g
mgS (ML mL )

mL mS mg kS cS m

+ ϕ+ + + ϕ
+ = − + ρ

ϕ+ + ϕ+ + = − ρ







 

 

 (6) 

 
The right-hand side in the Expressions of equation 

(6) represent the inertial forces caused by the angular 
acceleration of the hanging point as ρ , it is this 
inertial force that causes vibrations for the pendulum 
structure. Therefore, the equation (6) is used to design 
the DVA.  

 
2.3. The vibrations of the pendulum 
structure attached with normal DVA 
 

Vibration simulation with the data of the 
pendulum structure are summarized in Table 1. In this 
section, the normal DVA is attached to the pendulum 
structure to reduce vibration of the system. The 
normal DVA's parameters are randomly selected, is 
not optimally designed, as shown in Table 2.  

 
Table 1. The input parameters for the pendulum structure 

Description Parameters Value Unit 
Mass of  the pendulum 

structure M 800.0 kg 

Length of the pendulum 
structure L2 4.0 m 

 
Table 2. The input parameters for the normal DVA 

Description Parameters Value Unit 
Mass of  DVA m 16 kg 

The position of DVA L1 3.5 m 
The damping constant of 

DVA c 3.5 Ns/m 

The spring constant of 
DVA k 30 N/m 

 
The vibrations of the pendulum structure with and 

without DVA are performed. Each numerical 
simulation is considered under three cases: The 
pendulum structure with initial deflections, initial 
velocities and with both the initial deflections and 
initial velocities. 
 
Case 1. The pendulum structure attached 
with the normal DVA with initial deflection 
 

The pendulum structure's parameters and the 
normal DVA's parameters are identified in Tables 1, 

2 and equations (6). The initial conditions of the 
pendulum structure are setup with 0 0.0( / )rad sϕ =  
and 3

0 5.5 10 ( )radϕ −= × . The vibrations of the 
pendulum structure and the normal DVA are 
expressed in the Figures (4)-(5).  

 
Figure 4. The normal DVA's vibration with case  

 
Figure 5. The pendulum structure's vibration with case 1 

 
Case 2. The pendulum structure attached 
with the normal DVA with initial velocity 
 

The pendulum structure's parameters and the 
normal DVA's parameters are identified in Tables 1, 
2 and equations (6). The initial conditions of the 
pendulum structure are setup with 

3
0 6.5 10 ( / )rad sϕ −= ×  and 0 0.0( )radϕ = . The 

vibrations of the pendulum structure and the normal 
DVA are simulated in the Figures (6)-(7).  

 
Figure 6. The normal DVA's vibration with case 1 
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Figure 7. The pendulum structure's vibration with case 2 

 
Case 3. The pendulum structure attached 
with the normal DVA with initial deflection 
and initial velocity 
 

The pendulum structure's parameters and the 
normal DVA's parameters are identified in Tables 1, 
2 and equations (6). The initial conditions of the 
pendulum structure are setup with 3

0 5.5 10 ( )radϕ −= ×  
and 3

0 6.5 10 ( / )rad sϕ −= × . The vibrations of the 
pendulum structure and the normal DVA are 
represented in the Figures (8)-(9).  

 
Figure 8. The normal DVA's vibration with case 3 

 
Figure 9. The pendulum structure's vibration with case 3 

Figures (5), (7), (9) show that the vibrations of the 
pendulum structure have not reduced significantly by 
using the normal DVA under different initial 
conditions. This confirms that the determination of 

the DVA's optimum parameters to eliminate the 
vibration of the pendulum structure is necessary. 

 
3. OPTIMIZATION OF THE DVA 
 
3.1. Determination of optimal parameters of 
the DVA 
 

To write the non-dimensional equations, 
introducing parameters 

 
21
s 2

2

2 s

s 2

Lm kμ ; ; ;u L ;
M L m

ωc g; ; .
2m L ωϕ

ϕ

= η = ω = = ϕ

ζ = ω = α =
ω

 (7) 

 
Table 3 describes the parameters in the 

expressions of equation (7) 
 

Table 3. Parameters of the pendulum structure and DVA  
Parameters Description 

µ The mass ratio of DVA and the pendulum 
structure 

η The installed position ratio of DVA 

ωϕ The natural frequency of the pendulum 
structure 

ωs The natural frequency of DVA 
ξ The damping ratio of DVA 
α The natural frequency ratio 

 
Therefore, equation (6) can be rewritten in the matrix 

form 
 

•• •

ϒ+ ϒ+ ϒ =M C K F  (8) 
 
Where 
 

[ ]Tu sϒ =  (9) 
 

[-(1 ) - ]Tµη ρ µρ= +F    (10) 
 

2 0 01
;

0 2 ϕ

  + µη µη
= =    ξαµωµη µ   

M C  (11) 

 
2 2

2 2 2

(1 ) ϕ ϕ

ϕ ϕ

 + µη ω µω
=  

µω µα ω  
K  (12) 

 
From equations (8)-(12), the equations of state are 

expressed as 
 

( ) ( )t t
ρ

ρ= +y Zy Ψ   (13) 
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where 
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The quadratic torque matrix E is a solution of the 

Lyapunov equation as follows 
 

0T Tσ+ + =ZE EZ ΨΨ  (18) 
 

where σ is the white noise spectrum of the 
acceleration of the hanging point. 

By solving the system of equations (15)-(18), the 
matrix E is defined as 

 
11 12 13 14

21 22 23 24
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44
(1 )

4
E

ϕ

σ µ
αµξω
+

=  (35) 

 
In the quadratic torque matrix E, the response of 

the pendulum structure is E11. The smaller the E11 is, 
the faster the vibration of the pendulum structure 
turns off. So, the conditions for the response of the 
pendulum structure, E11, yield minimum value as 
follows 

 
11 0

opt

E

α αα =

∂
=

∂
 (36) 

 

11 0
opt

E

ξ ξξ =

∂
=

∂
 (37) 

 
Solving the system of equations (20), (36), (37), 

the optimal parameters of the DVA are obtained as 
 

4 3 3 2 2 2

2

2

2 2 4
22

2(1 ) 1opt

η µ η µ η µ
η µ µ

α
η µ ηµ

 + +
 
+ + + =

+ +
 

(38) 

 
3 2 2

4 3 2 2

2
2

1 (4 3 6 4)1
4 (1 4 ( 2)

(1 ) 1 1( 2 )
2 2

opt

η µ η µ η µ ηµ µ
ξ

η µ η η µ
η µ

η η µ

− + + − +
=

 + + +
 +
 + + +  

 
(39) 

 
From equation (39), it is clear that 0optξ =  when 

( 1) 0η − = , deduce 1 2L L= . So, if the DVA is 
installed at the position of the center of gravity of the 
pendulum then it has no effect on reducing vibration 
of the system. Therefore, the DVA is installed at the 
position the farther from the center of gravity of the 
pendulum, the better the effect of eliminating 
vibration. 

Equations (38) and (39) express optimal 
expressions of the DVA for the pendulum structure 
subjected to moving loads caused by the hanging 
point. 

 
3. 2. The vibrations of the pendulum structure 
attached with the optimal DVA 
 

The input parameters for the pendulum structure 
are listed in Table 1. The input parameters of DVA 
are listed in Table 4. To verify the merit of proposed 
method, numerical simulations are performed for 
determining the vibrations of the pendulum structure 
attached with the DVA with optimal design 
parameters. Each numerical simulation is still 

considered under three cases:  
The pendulum structure with initial deflections, 

initial velocities and with both the initial deflections 
and initial velocities. 

 
Table 4. The input parameters for the DVA 
Description Parameters Value Unit 

Mass of  DVA M 16.0 kg 
The position of DVA L1 2.0 m 
 
From in Tables (1), (4) and equations (7), (38), 

(39), values of the optimal parameters of the DVA can 
be obtained as 
 

;1.01 0.052optoptα ξ= =  (40) 
 

From equations (7) and (40), the spring constant 
and the damping constant are determined as 

 
39.883 / , 2.642 /k N m c Ns m= =  (41) 

 
Case 1. The pendulum structure attached 
with the optimal DVA with initial deflection 
 

The pendulum structure's parameters and the 
optimal DVA's parameters are identified in Tables 1, 
4 and equation (41).  

 

 
Figure 10. The optimal DVA's vibration with case 1 

 
Figure 11. The pendulum structure's vibration with case 1 
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The initial conditions of the pendulum structure are 
setup with 0 0.0( / )rad sϕ =  and 3

0 5.5 10 ( )radϕ −= × . 
The Maple software is used to simulate the vibrations 
of the pendulum structure with the optimal DVA, as 
shown in the Figures (10)-(11). 

 

Case 2. The pendulum structure attached 
with the optimal DVA with initial velocity 
 

The pendulum structure's parameters and the 
optimal DVA's parameters are identified in Tables 1, 
4 and equation (41).  

 
Figure 12. The optimal DVA's vibration with case 2 

  

 
Figure 13. The pendulum structure's vibration with case 2 

 
The initial conditions of the pendulum structure are 

setup with  3
0 6.5 10 ( / )rad sϕ −= ×  and 

0 0.0( )radϕ = . The vibrations of the pendulum 
structure and the optimal DVA are expressed in the 
Figures (12)-(13).  
 
Case 3. The pendulum structure attached 
with the optimal DVA with initial deflection 
and initial velocity 
 

The pendulum structure's parameters and the 
optimal DVA's parameters are identified in Tables 1, 
4 and equation (41).  

 
Figure 14. The optimal DVA's vibration with case 3 

 

 
Figure 15. The pendulum structure's vibration with case 3 
 

The initial conditions of the pendulum structure are 
setup with 3

0 5.5 10 ( )radϕ −= ×  and 
3

0 6.5 10 ( / )rad sϕ −= × . The vibrations of the pendulum 
structure and the optimal DVA are represented in the 
Figures (14)-(15).  

 
Figures (11), (13) and (15) shown that the optimum 

parameters of DVA are determined from equations 
(38) and (39), which has a very good effect on 
vibration suppression of the pendulum structure 
subjected to moving loads caused by the hanging 
point. 
 
4. CONCLUSIONS 
 

A new of this study is to find explicit analytical 
solutions of the optimal DVA, which are used to 
suppress vibrations of the pendulum structure 
subjected to moving loads caused by the hanging 
point.  

In this paper, a mathematical model for 
determining the vibration of the pendulum structure 
with DVA under the inertial force of accelerating 
hanging point is proposed. Vibration equations are 
formulated for the system shown in the Expressions 
of equation (6). This is an extremely important step 
for designing the DVA's optimum parameters to 
suppress vibration of the pendulum structure. The 
optimal parameters of the DVA are determined by 
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using the minimum quadratic torque method are 
shown in equations (38) and (39).  

The numerical simulations are constructed to 
evaluate the effectiveness of the optimal design 
parameters of the DVA. The numerical results show 
that the vibration of the pendulum structure is 
suppressed when the DVA is optimally designed. 
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