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Abstract: - The Timoshenko beam and the Euler-Bernoulli beam models are adopted in this purpose study 
for modal and frequency response analysis of unidirectional composite thick cantilever beam (Single thick 
composite layer forms the beam). The shear deformation effect is the main parameter taken in this study 
where Timoshenko beam model results are compared to those of the Euler-Bernoulli beam model. The first 
part of this study is consecrated to determinate the mode shapes and their associate natural frequencies of 
the cantilever beam for various shear deformation values by using the finite element method. The mode 
shapes and their natural frequencies results for the unidirectional layer composite cantilever beam are 
validated with DSM (Dynamic Stiffness Method) published results. The frequency response analysis of an 
impulse force of both models is illustrated, in the second part using a MATLAB@ program. 
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1. INTRODUCTION  
 

The Timoshenko theory and Euler-Bernoulli 
theory are the most theories used to study the dynamic 
behavior or vibration motion of beams.  

The Euler-Bernoulli model is used in free 
vibration analysis of metallic beams since the 18th 
century, where the Timoshenko beam model is 
developed in the 20th century [1]. 

In 1972, A theoretical analysis of the vibration of 
unidirectional fiber reinforced, composite beams 
paper is given by Teoh and Hung [2].  

Several researches use the Dynamic Stiffness 
Method (DSM) to study the free vibration analysis of 
composite beams: J. R Banerjee gives an exact 
expression for the frequency equation and mode 
shape formulae of composite Timoshenko beams. An 
exact dynamic stiffness matrix is presented for a 
composite beam includes the effects of shear 
deformation and rotatory inertia with applications to 
composite Timoshenko beam developed by Banerjee 
and Williams [3]. Su and Banerjee give recent 
development of dynamic stiffness method for free 
vibration of functionally graded Timoshenko beams 
[4]. A Dynamic stiffness formulation and free 
vibration analysis of centrifugally stiffened 
Timoshenko beams[5] and free vibration of axially 
loaded composite Timoshenko beams using the 

dynamic stiffness matrix method[6] are developed by 
J. R Banerjee.  

The effect of elastic foundation on free vibration 
of initially deflected non-uniform axially functionally 
graded (AFG) thick beam on elastic foundation on the  
basis of Timoshenko beam theory is studied by Lohar 
et al.[7]. The shape function method is adopted by 
Zhao [8] to obtain the frequency and mode shape 
equations of the free vibrations of Euler-Bernoulli 
beams with an arbitrary number of intermediate 
elastic supports, concentrated masses, and non-
conventional boundary conditions under an axial 
force.  

The finite element method is used by Deghboudj 
and Boukhedena to study the free vibration analysis 
and control passive of Aluminum alloy plate with 
damping orthotropic patches [9] and used by Gillich 
et al to localize damages in cantilever beams [10]. 

Kwon and Bang develop a computer programs in 
MATLAB to study the Finite Element Method and 
the Fast Fourier Transform (FFT) results [11]. 

In the purpose study, The Timoshenko beam and 
Euler Bernoulli beam (no effects of transverse shear 
deformation) theories are adopted for modal analysis 
and frequency response analysis of a single layer 
composite beam. A MATLAB computer programs 
are developed to show the influence of the transverse 
shear deformation effects on modal analysis and 
frequency response analysis of clamped-free 
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composite beam using the Fast Fourier Transform 
(FFT) results at the tip of the beam. 

A single glass/epoxy thick layer model the section 
of the beam (Figure 1).  

 

Figure 1. A single-layer composite beam model 
 
2. THE FINITE ELEMENT MODELS 
 
2.1. The Euler-Bernoulli beam Model 
 

The governing partial differential equations of 
motion for the coupled bending-torsional free 
vibration of composite beam are [11]:  
 

𝐸𝐸𝐸𝐸
𝜕𝜕4𝑤𝑤
𝜕𝜕𝑥𝑥4

+ 𝐾𝐾
𝜕𝜕3Ψ
𝜕𝜕𝑥𝑥3

+ 𝑚𝑚
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑡𝑡2

= 0 (1.a) 

 

𝐺𝐺𝐺𝐺
𝜕𝜕2𝛹𝛹
𝜕𝜕𝑥𝑥2

+ 𝐾𝐾
𝜕𝜕3𝑤𝑤
𝜕𝜕𝑥𝑥3

− 𝐼𝐼𝛼𝛼
𝜕𝜕2𝛹𝛹
𝜕𝜕𝑡𝑡2

= 0 (1.b) 

 
where: 

- EI is the bending stiffness,  
- GJ is the torsional stiffness  
- K the stiffness of bending-torsion coupling 
-  m, I𝞪𝞪 is the mass per unit in length and the 

moment of inertia about the axis elastic.  
The finite element Euler-Bernoulli beam model is 

developed by Bennamia for modal and frequency 
response analysis where the finite element method is 
developed to deduce the mass and stiffness matrices 
of the laminated composite beam [12]. 

 
2.2. The Timoshenko beam Model 
 
 The Timoshenko beam model developed in this 
section is based on the assumption that the plan 
normal to the beam axis before deformation does 
not remain to the beam axis after deformation 
[11] as seen in figure 2, so the transverse shear 
deformation is included. 

The governing partial differentialequations of 
motion for the coupled bending-torsional free 
natural vibration of the composite Timoshenko 
beam are given by [1]: 
 

𝐸𝐸𝐸𝐸
𝜕𝜕2𝜃𝜃
𝜕𝜕𝑦𝑦2 + 𝑘𝑘𝑘𝑘𝑘𝑘 �

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 − 𝜃𝜃� + 𝐾𝐾

𝜕𝜕2Ψ
𝜕𝜕𝑦𝑦2 − 𝜌𝜌Ι

𝜕𝜕2𝜃𝜃
𝜕𝜕𝑡𝑡2 = 0 (2.a) 

 

𝑘𝑘𝑘𝑘𝑘𝑘 �
𝜕𝜕2𝑣𝑣
𝜕𝜕𝑦𝑦2

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� − 𝜌𝜌

𝜕𝜕2𝑣𝑣
𝜕𝜕𝑡𝑡2

= 0 (2.b) 

 

𝐺𝐺𝐺𝐺
𝜕𝜕2Ψ
𝜕𝜕𝑦𝑦2

+ 𝐾𝐾
𝜕𝜕2𝜃𝜃
𝜕𝜕𝑦𝑦2

− 𝐼𝐼𝛼𝛼
𝜕𝜕2Ψ
𝜕𝜕𝑡𝑡2

= 0 (2.c) 

 
where 𝑣𝑣, 𝛹𝛹 and 𝜃𝜃 represent the movement in 
bending, torsion and angle of rotation, 
respectively. 𝐸𝐸𝐸𝐸 is the bending rigidity, 𝐺𝐺𝐺𝐺 is the 
torsional rigidity, 𝐾𝐾 is the bending-torsion 
coupling rigidity and 𝑘𝑘𝑘𝑘𝑘𝑘 is the shear rigidity of 
the beam. 𝜌𝜌 is the mass density, 𝐼𝐼𝛼𝛼 is the moment 
of inertia about the axis elastic and  𝐼𝐼 is the 
second moment of area of the beam cross section. 

Figure 2. Timoshenko beam model [11] 
 
2.2.1 The Kinetic Energy of the Timoshenko 
beam model 
 

The kinetic energy of bending-torsional layered 
composite beam given by [12]: 
 

𝑇𝑇 =
1 
2
�𝜌𝜌({𝑤̇𝑤})2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (3) 

 
where w and 𝛹𝛹 represent the movement in bending 
and torsion, respectively, ρ is the mass density and 
xαis the geometric coupling (distance between the 
mass axis and elastic axis of the wing). 

The kinetic energy can be written as [14][18]: 
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𝑇𝑇 =
1
2

{𝑞̈𝑞}𝑡𝑡[𝑀𝑀𝑒𝑒]{𝑞̈𝑞} (4) 

where 
[𝑀𝑀𝑒𝑒] : Beam element mass matrix 
 
2.2.2 The Potential Energy of the 
Timoshenko beam model 
 

The potential energy of bending-torsional layered 
composite beam given by [11]: 
 

𝑈𝑈 = 𝑈𝑈𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑈𝑈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
 

𝑈𝑈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑈𝑈𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 
 

The shear and bending energies are given by 
[11]: 
 

𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =
𝑏𝑏
2� �

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕�

𝑇𝑇

𝐸𝐸𝐸𝐸
𝑙𝑙

0
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕�𝑑𝑑𝑑𝑑, (5.a) 

 

𝑈𝑈𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 =
𝜇𝜇
2
� �−𝜃𝜃 +

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑇𝑇

𝐺𝐺𝐺𝐺
𝑙𝑙

0
�−𝜃𝜃 +

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑑𝑑𝑑𝑑, (5.b) 

 

𝑈𝑈𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
1
2
�𝐾𝐾�

𝑑𝑑2𝑤𝑤
𝑑𝑑𝑥𝑥2

��
𝑑𝑑Ψ
𝑑𝑑𝑑𝑑

�𝑑𝑑𝑑𝑑, (5.c) 

 
where 
𝜇𝜇 is the correction factor for shear energy.  
 

The kinetic energy can be written as [14][18]: 
 

𝑈𝑈 =
1
2

{𝑞𝑞}𝑡𝑡[𝐾𝐾𝑒𝑒]{𝑞𝑞} (6) 

 
where 
[𝐾𝐾𝑒𝑒] : Beam element stiffness matrix 
 
2.3. Modal and frequency response Analysis 
 

The governing differential equation of motion of 
forced system given as [11]: 
 

[𝑀𝑀]{𝑞̈𝑞} + [𝐾𝐾]{𝑞𝑞} = {𝐹𝐹}𝑈𝑈 =
1
2

{𝑞𝑞}𝑡𝑡[𝐾𝐾𝑒𝑒]{𝑞𝑞} (7) 

 
The natural frequencies and mode shapes of the 

beam are calculated by the matrix system obtained by 
the discrete equations of motion for the global 
structure: 
 

[𝑀𝑀]{𝑞̈𝑞} + [𝐾𝐾]{𝑞𝑞} = 0 (8) 
 
[𝑀𝑀] is the global mass matrix, [𝐾𝐾 ]is the global 
stiffness matrix and {𝑞𝑞}is The displacement vector. 

{𝐹𝐹} : vector force 
 
3. THE LAMINATED COMPOSITE THICK 
BEAM  
 

The composite beam is simulated to clamped-free 
single unidirectional fiber reinforced composite   
layer [𝜃𝜃 = 15°], the length of the beam is 𝐿𝐿 =
0.1905 𝑚𝑚 the width and thickness of the beam are: 
𝑑𝑑 = 0.0127 𝑚𝑚 and 𝑡𝑡 = 0.00318 𝑚𝑚 [1-2]. The mass 
per unit of length is 𝑚𝑚 = 0.0544 𝐾𝐾𝐾𝐾/𝑚𝑚, the mass 
moment of inertia per unit length is     𝐼𝐼𝛼𝛼 =
0.7770 × 106  𝐾𝐾𝐾𝐾 𝑚𝑚 and the shear rigidity is 𝑘𝑘𝑘𝑘𝑘𝑘 =
6343.3 𝑁𝑁  [1-2]. 

The bending, torsional and coupled stiffness 
rigidities are calculated for laminate layer by [13]: 
 

𝐸𝐸𝐸𝐸 = 𝑑𝑑 �𝐷𝐷22 −
𝐷𝐷122

𝐷𝐷11
�, (9.a) 

 

𝐺𝐺𝐺𝐺 = 4𝑑𝑑 �𝐷𝐷66 −
𝐷𝐷162

𝐷𝐷11
� (9.b) 

 

𝐾𝐾 = 2𝑑𝑑 �𝐷𝐷22 −
𝐷𝐷12 𝐷𝐷16
𝐷𝐷11

� (9.c) 

 
[𝐷𝐷]6×6 Called bending stiffness matrix of laminated 
composite beams [12]. 
 
4. RESULTS AND DISCUSSION 
 
4.1 The effective rigidities evaluation for 
various ply orientation angle  
 

Figures 3 shows the effectives rigidities as a 
function of ply orientation angles. It appears clearly 
that the coupling rigidity 𝐾𝐾 equal to zero (decoupled 
case) for 0°, 90° and  ≈ 55° ply orientation angles. 
 

 
Figure 3. Effective rigidities of single layer cross-section 
 



 

RJAV vol 18 issue 2/2021                                          115                                                        ISSN 1584-7284 

4.2 Free vibration analysis  
 
4.2.1 Validation 
 

In order to validate the finite element beam 
models, the  four first natural frequencies results 
obtained from the Euler-Bernoulli and Timoshenko 
beam models using MATLAB program are compared 
with those obtained by Banarjee and Williams [3] and 
Borneman [13] respectively, for the fiber reinforced 
ply orientation angle 𝜃𝜃 = 15°.  

The effective rigidities for this fiber angle are[1] 
[3]: 

 𝐸𝐸𝐸𝐸 = 0.2865 𝑁𝑁.𝑚𝑚2, 𝐺𝐺𝐺𝐺 = 0.1891 𝑁𝑁.𝑚𝑚2 and 
𝐾𝐾 = 0.1143 𝑁𝑁.𝑚𝑚2. 
 
4.2.1.1 Euler-Bernoulli beam model  
 

The shear deformation effects are neglected in this 
model. The table 1 shows the four first frequencies 
without the effects of shear deformation (Euler-
Bernoulli.  

Table 1. First four frequencies of Euler-Bernoulli beam 
model  

N
° 

Euler-
Bernoulli 

Model[Hz] 

Refere
nce [3] 

Euler-Bernoulli 
Model [rad/s] 

Refere
nce [1] 

1 30,81 30,82 193,61 193,62 
2 192,72 192,7 1210,93 1210,9 
3 537,48 537,4 3377,12 3376,5 
4 648,73 648,7 4076,13 4076,1 

 
The first four frequencies obtained by modal 

analysis using the finite element Euler-beam model 
are very similar with those obtained by Dynamic 
Stiffness Method developed by J. R Banerjee [1] and 
Banerjee and Williams [3]. 
 
4.2.1.2 The Timoshenko beam model  
 

1. Natural frequencies 
 

The shear deformation effects are given by 
[1][2][3]: 

 

𝑠𝑠2 =
𝐸𝐸𝐸𝐸

𝑘𝑘𝑘𝑘𝑘𝑘𝐿𝐿2
 (10) 

 
The table 2 shows the four first frequencies with 

the effects of shear deformation (𝑆𝑆 = 0.03528).  
The frequencies results obtained by finite element 

Timoshenko beam model are similar to Borneman 
results [13] obtained by DSM approach. 

 

Table 2. First four frequencies of the Timoshenko beam 
model  (𝑆𝑆 = 0.03528) 

Frequency 
number 

Timoshenko  
beam model  

[rad/s] 

Reference [13] 
[rad/s] 

1 193,19 193,2 
2 1192.84 1192,9 
3 3262.37 3262,2 
4 4073,17 4073,2 

 
 

2. Mode Shapes 
 

The mode shapes of the composite thick 
Timoshenko beam (𝑆𝑆 = 0.03528) obtained by the 
system (2) are shown in figures 4(a), 4(b), 4(c) and 
4(d). 
 

 
(a) 

 

 
(b) 

Figure 4. (a), (b) Mode shapes and natural frequencies of 
composite Timoshenko single composite layer 𝜃𝜃 = 15° 
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(c) 
 

 
(d) 

Figure 4. (c), (d) Mode shapes and natural frequencies of 
composite Timoshenko single composite layer 𝜃𝜃 = 15° 

The obtained mode shapes results using the 
Timoshenko beam model of cantilever unidirectional 
composite beam 𝜃𝜃 = 15° are very similar with the 
results obtained by Banerjee [1] and Banerjee and 
Williams [3] using DSM approach. 
 
4.2.2 The natural frequencies for various ply 
orientation angle  
 

Varying the ply orientation angle from 0° to 90°, 
the five natural frequencies obtained by modal 
analysis are shown in figures 5 and 6 by using the 
Euler-Bernoulli and the Timoshenko finite element 
beam respectively. 

The figures below show clearly that the curves of 
each frequency are very similar for both models 
(Euler-Bernoulli and Timoshenko). It is remarkable 
that the frequencies obtained by the Timoshenko 
beam model are less than the results obtained by the 
Euler-Beam model for all ply orientation angles. 

 

 
Figure 5. The first five natural frequencies for various 
angle-ply orientation obtained by the Euler-Bernoulli 

beam 
 

 
Figure 6. The first five natural frequencies for various 

angle-ply orientation obtained by the Timoshenko beam 
(𝑆𝑆 = 0.03528). 

 
4.3 The effects of shear on natural 
frequencies  
 

The effects of shear deformation on the three first 
frequencies of the single layer composite beam       
[𝜃𝜃 = 15°]obtained by Finite Elements Analysis 
program is presented in this paragraph. Figure 7 
shows the three first natural frequencies for different 
values of shear deformation compared to the results 
obtained from Euler-Bernoulli results. 
𝝎𝝎𝟎𝟎 Presents the frequencies results obtained by 
Euler-Bernoulli beam theory (𝑆𝑆 = 0) (see table 1). It 
appears clearly that the results obtained by varying 
the shear deformation from 0 to 0.1 the non-
dimensional natural frequencies decrease for the three 
first natural frequencies, where the difference 
between the first and third curves is remarkable. The 
obtained results are very similar to J. R Banerjee [1] 
and Teoh and Huang results [2]. 
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Figure 7. Shear deformation effects on natural 

frequencies of thick beam  

 
4.4 Frequency Response Analysis 
 

A spectrum response analysis is investigated, in 
this part. The FFT result at the tip of the clamped-free 
beam using an impulse force is presented for different 
shear deformation values 𝑆𝑆: 0.02, 0.04, 0.06, 0.08 and 
0.1. Figures 8(a), 8(b) and 8(c) show the FFT result 
of the single ply layer 𝜃𝜃 = 15° for the different shear 
values. The results show that there are three peaks of 
resonance in the 700 first frequencies range; each 
peak corresponds to the first, second and third 
frequencies.  
• It is observed that the absolute values of the FFT 

result increase with the variation of the shear 
deformation values for the three first frequencies. 

• Figure 8(a) shows that the 1st resonance frequency 
is almost similar for the different values of shear 
deformation. 

• Figure 8(b) shows a slight difference in the 2nd 
resonance frequency for the different values of 
shear deformation. 

• Figure 8(c) shows a remarkable difference in the 
3rd resonance frequency for the different values of 
shear deformation. 

 
 

 
a) 

 
b) 

 
c) 

Figure 8. The FFT result of the clamped-free beam with a 
single layer 𝜃𝜃 = 15°. 

 
5. CONCLUSION 

 
A finite element method is developed to illustrate 

the modal analysis and frequency response analysis 
of a clamped-free single layer ply orientation angle 
composite beam using Euler-Bernoulli and 
Timoshenko beam approximations, in this paper. 

The results obtained by free vibration analysis 
using the Timoshenko beam model are validated with 
the dynamic stiffness method of unidirectional 
composite layer beam 𝜃𝜃 = 15°. The mode shapes and 
their associate frequencies results obtained from the 
Finite Element Timoshenko beam model are very 
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similar with those obtained by using the dynamic 
stiffness method DSM. 

The obtained three first dimensionless frequencies 
from modal analysis curves show that the variation of 
the transverse shear deformation has influence in 
natural frequencies. 

The Absolute values of FFT (Fast Fourier 
Transform) response result of an impulse force 
excitation for various shear deformation values is 
presented using a MATLAB program. 

The FFT result at the tip for the beam for various 
shear deformation 0.02, 0.04, 0.06, 0.08 and 0.1 
demonstrate the frequency response of the cantilever 
beam. These results explain the influence of the 
transverse shear deformation on the frequencies of 
resonance of the composite beam, where the 1st 
frequency is similar varying the shear deformation 
values, a difference between the frequencies of 
resonance (2nd and 3rd frequencies) becomes 
remarkable and decrease with the increasing of the 
transverse shear deformation. The Absolute value of 
FFT increase also with the increasing of shear 
deformation. 

The frequency response results obtained from the 
finite element approximation by using the 
Timoshenko and Euler-Bernoulli beam models for the 
unidirectional composite beam 𝜃𝜃 = 15° give an 
important idea for the unidirectional ply orientation 
angle section in the first time, and it can be 
generalized for laminated thick beams. 
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