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Abstract: - The Timoshenko beam and the Euler-Bernoulli beam models are adopted in this purpose study
for modal and frequency response analysis of unidirectional composite thick cantilever beam (Single thick
composite layer forms the beam). The shear deformation effect is the main parameter taken in this study
where Timoshenko beam model results are compared to those of the Euler-Bernoulli beam model. The first
part of this study is consecrated to determinate the mode shapes and their associate natural frequencies of
the cantilever beam for various shear deformation values by using the finite element method. The mode
shapes and their natural frequencies results for the unidirectional layer composite cantilever beam are
validated with DSM (Dynamic Stiffness Method) published results. The frequency response analysis of an
impulse force of both models is illustrated, in the second part using a MATLAB@ program.
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1. INTRODUCTION

The Timoshenko theory and Euler-Bernoulli
theory are the most theories used to study the dynamic
behavior or vibration motion of beams.

The Euler-Bernoulli model is used in free
vibration analysis of metallic beams since the 18"
century, where the Timoshenko beam model is
developed in the 20" century [1].

In 1972, A theoretical analysis of the vibration of
unidirectional fiber reinforced, composite beams
paper is given by Teoh and Hung [2].

Several researches use the Dynamic Stiffness
Method (DSM) to study the free vibration analysis of
composite beams: J. R Banerjee gives an exact
expression for the frequency equation and mode
shape formulae of composite Timoshenko beams. An
exact dynamic stiffness matrix is presented for a
composite beam includes the effects of shear
deformation and rotatory inertia with applications to
composite Timoshenko beam developed by Banerjee
and Williams [3]. Su and Banerjee give recent
development of dynamic stiffness method for free
vibration of functionally graded Timoshenko beams
[4]. A Dynamic stiffness formulation and free
vibration analysis of centrifugally stiffened
Timoshenko beams[5] and free vibration of axially
loaded composite Timoshenko beams using the

dynamic stiffness matrix method[6] are developed by
J. R Banerjee.

The effect of elastic foundation on free vibration
of initially deflected non-uniform axially functionally
graded (AFG) thick beam on elastic foundation on the
basis of Timoshenko beam theory is studied by Lohar
et al.[7]. The shape function method is adopted by
Zhao [8] to obtain the frequency and mode shape
equations of the free vibrations of Euler-Bernoulli
beams with an arbitrary number of intermediate
elastic supports, concentrated masses, and non-
conventional boundary conditions under an axial
force.

The finite element method is used by Deghboud;j
and Boukhedena to study the free vibration analysis
and control passive of Aluminum alloy plate with
damping orthotropic patches [9] and used by Gillich
et al to localize damages in cantilever beams [10].

Kwon and Bang develop a computer programs in
MATLAB to study the Finite Element Method and
the Fast Fourier Transform (FFT) results [11].

In the purpose study, The Timoshenko beam and
Euler Bernoulli beam (no effects of transverse shear
deformation) theories are adopted for modal analysis
and frequency response analysis of a single layer
composite beam. A MATLAB computer programs
are developed to show the influence of the transverse
shear deformation effects on modal analysis and
frequency response analysis of clamped-free
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composite beam using the Fast Fourier Transform
(FFT) results at the tip of the beam.

A single glass/epoxy thick layer model the section
of the beam (Figure 1).

Figure 1. A single-layer composite beam model

2. THE FINITE ELEMENT MODELS
2.1. The Euler-Bernoulli beam Model
The governing partial differential equations of

motion for the coupled bending-torsional free
vibration of composite beam are [11]:

E164W+K63qj+ o _ (1.2)
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- El s the bending stiffness,

- GJis the torsional stiffness

- K the stiffness of bending-torsion coupling

- m, lqis the mass per unit in length and the
moment of inertia about the axis elastic.

The finite element Euler-Bernoulli beam model is
developed by Bennamia for modal and frequency
response analysis where the finite element method is
developed to deduce the mass and stiffness matrices
of the laminated composite beam [12].

2.2. The Timoshenko beam Model

The Timoshenko beam model developed in this
section is based on the assumption that the plan
normal to the beam axis before deformation does
not remain to the beam axis after deformation
[11] as seen in figure 2, so the transverse shear
deformation is included.

The governing partial differentialequations of
motion for the coupled bending-torsional free
natural vibration of the composite Timoshenko
beam are given by [1]:

120 s iac (- 0) + k22 _ 20 (2
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where v, ¥ and 6 represent the movement in
bending, torsion and angle of rotation,
respectively. ET is the bending rigidity, GJ is the
torsional rigidity, K 1is the bending-torsion
coupling rigidity and kAG is the shear rigidity of
the beam. p is the mass density, I, is the moment
of inertia about the axis elastic and [ is the
second moment of area of the beam cross section.
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Figure 2. Timoshenko beam model [11]

2.2.1 The Kinetic Energy of the Timoshenko
beam model

The kinetic energy of bending-torsional layered
composite beam given by [12]:

1
T =5 [ (i) dxdyds 3)

where w and ¥ represent the movement in bending
and torsion, respectively, p is the mass density and
x.s the geometric coupling (distance between the
mass axis and elastic axis of the wing).

The kinetic energy can be written as [14][18]:
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where
[M,] : Beam element mass matrix

2.2.2 The Potential
Timoshenko beam model

Energy of the

The potential energy of bending-torsional layered
composite beam given by [11]:

U= Ucoupled + Udecoupled

Udecoupled = Ubending + Ushear

The shear and bending energies are given by

[11]:
b (Liae\" (06
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where

U is the correction factor for shear energy.

The kinetic energy can be written as [14][18]:

1
U= {a)[K]a} (6)

where
[K.] : Beam element stiffness matrix

2.3. Modal and frequency response Analysis

The governing differential equation of motion of
forced system given as [11]:

1
(M1} + [K]{q} = (F}U = 5 (g} [K ]}  (7)

The natural frequencies and mode shapes of the
beam are calculated by the matrix system obtained by
the discrete equations of motion for the global
structure:

[M1{g} + [Kl{q} =0 ®)

[M]is the global mass matrix, [K ]is the global
stiffness matrix and {q}is The displacement vector.

{F} : vector force

3. THE LAMINATED COMPOSITE THICK
BEAM

The composite beam is simulated to clamped-free
single unidirectional fiber reinforced composite
layer [8 = 15°], the length of the beam is L =
0.1905 m the width and thickness of the beam are:
d =0.0127 m and t = 0.00318 m [1-2]. The mass
per unit of length is m = 0.0544 Kg/m, the mass
moment of inertia per unit length is Iy =
0.7770 x 10° Kg m and the shear rigidity is kKAG =
6343.3 N [1-2].

The bending, torsional and coupled stiffness
rigidities are calculated for laminate layer by [13]:

D,
El =d D22 -, (93)
D11
ol = Dfs
J = 4d | Dgs — 3 (9.b)
11
Dy, D
K=2d (DZZ - %) (9.c)

[D]gxe Called bending stiffness matrix of laminated
composite beams [12].

4. RESULTS AND DISCUSSION

4.1 The effective rigidities evaluation for
various ply orientation angle

Figures 3 shows the effectives rigidities as a
function of ply orientation angles. It appears clearly
that the coupling rigidity K equal to zero (decoupled
case) for 0°,90° and =~ 55° ply orientation angles.

0.4 T T T T T
o _\

L L L L L L L L
] 10 20 a0 40 50 &0 7o a0 a0

ply Angle (*)
a 0.2 _\_/’/
04 ! ! ! : ! ! ! !
o 10 20 30 40 B0 60 T0 an a0
ply Angle (*)

9y D/—-\

-0.2

1] 10 20 30 40 B0 &0 70 a0 an
ply Angle (*)

Figure 3. Effective rigidities of single layer cross-section
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4.2 Free vibration analysis

4.2.1 Validation

In order to validate the finite element beam
models, the four first natural frequencies results
obtained from the Euler-Bernoulli and Timoshenko
beam models using MATLAB program are compared
with those obtained by Banarjee and Williams [3] and
Borneman [13] respectively, for the fiber reinforced
ply orientation angle 8 = 15°.

The effective rigidities for this fiber angle are[1]
[31]:

EIl = 0.2865 N.m?,
K = 0.1143 N.m?.

GJ =0.1891 N.m? and

4.2.1.1 Euler-Bernoulli beam model

The shear deformation effects are neglected in this
model. The table 1 shows the four first frequencies
without the effects of shear deformation (Euler-
Bernoulli.

Table 1. First four frequencies of Euler-Bernoulli beam

model
N Bfl}:z:lli Refere | Euler-Bernoulli | Refere
° Model[Hz] nce [3] | Model [rad/s] | nce [1]
1 30,81 30,82 193,61 193,62
2 192,72 192,7 1210,93 1210,9
3 537,48 537,4 3377,12 3376,5
4 648,73 648,7 4076,13 4076,1

The first four frequencies obtained by modal
analysis using the finite element Euler-beam model
are very similar with those obtained by Dynamic
Stiffness Method developed by J. R Banerjee [1] and
Banerjee and Williams [3].

4.2.1.2 The Timoshenko beam model
1. Natural frequencies

The shear deformation effects are given by

[1[2]3]:

El
2B 10
S T kAcL? (10)

The table 2 shows the four first frequencies with
the effects of shear deformation (S = 0.03528).

The frequencies results obtained by finite element
Timoshenko beam model are similar to Borneman
results [13] obtained by DSM approach.

Table 2. First four frequencies of the Timoshenko beam
model (S = 0.03528

Frequency :l:llﬁs:l::(ﬁ; Reference [13]
number [rad/s] [rad/s]
1 193,19 193,2
2 1192.84 1192,9
3 3262.37 3262,2
4 4073,17 4073,2

2. Mode Shapes

The mode shapes of the composite thick
Timoshenko beam (S = 0.03528) obtained by the
system (2) are shown in figures 4(a), 4(b), 4(c) and
4(d).
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Figure 4. (a), (b) Mode shapes and natural frequencies of
composite Timoshenko single composite layer § = 15°
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Figure 4. (c), (d) Mode shapes and natural frequencies of

composite Timoshenko single composite layer § = 15°

The obtained mode shapes results using the
Timoshenko beam model of cantilever unidirectional
composite beam 6 = 15° are very similar with the
results obtained by Banerjee [1] and Banerjee and
Williams [3] using DSM approach.

4.2.2 The natural frequencies for various ply
orientation angle

Varying the ply orientation angle from 0° to 90°,
the five natural frequencies obtained by modal
analysis are shown in figures 5 and 6 by using the
Euler-Bernoulli and the Timoshenko finite element
beam respectively.

The figures below show clearly that the curves of
each frequency are very similar for both models
(Euler-Bernoulli and Timoshenko). It is remarkable
that the frequencies obtained by the Timoshenko
beam model are less than the results obtained by the
Euler-Beam model for all ply orientation angles.
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Figure 5. The first five natural frequencies for various
angle-ply orientation obtained by the Euler-Bernoulli
beam
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Figure 6. The first five natural frequencies for various
angle-ply orientation obtained by the Timoshenko beam
(§ =0.03528).

4.3 The effects of shear
frequencies

on natural

The effects of shear deformation on the three first
frequencies of the single layer composite beam
[6 = 15°]obtained by Finite Elements Analysis
program is presented in this paragraph. Figure 7
shows the three first natural frequencies for different
values of shear deformation compared to the results
obtained from Euler-Bernoulli results.
wo Presents the frequencies results obtained by
Euler-Bernoulli beam theory (S = 0) (see table 1). It
appears clearly that the results obtained by varying
the shear deformation from 0 to 0.1 the non-
dimensional natural frequencies decrease for the three
first natural frequencies, where the difference
between the first and third curves is remarkable. The
obtained results are very similar to J. R Banerjee [1]
and Teoh and Huang results [2].
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Figure 7. Shear deformation effects on natural
frequencies of thick beam

4.4 Frequency Response Analysis

A spectrum response analysis is investigated, in
this part. The FFT result at the tip of the clamped-free
beam using an impulse force is presented for different
shear deformation values S: 0.02, 0.04, 0.06, 0.08 and
0.1. Figures 8(a), 8(b) and 8(c) show the FFT result
of the single ply layer 8 = 15° for the different shear
values. The results show that there are three peaks of
resonance in the 700 first frequencies range; each
peak corresponds to the first, second and third
frequencies.

e [t is observed that the absolute values of the FFT
result increase with the variation of the shear
deformation values for the three first frequencies.

o Figure 8(a) shows that the 1% resonance frequency
is almost similar for the different values of shear
deformation.

e Figure 8(b) shows a slight difference in the 2™
resonance frequency for the different values of
shear deformation.

o Figure 8(c) shows a remarkable difference in the
3™ resonance frequency for the different values of
shear deformation.

5. CONCLUSION

A finite element method is developed to illustrate
the modal analysis and frequency response analysis
of a clamped-free single layer ply orientation angle
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Figure 8. The FFT result of the clamped-free beam with a
single layer 6 = 15°.

The results obtained by free vibration analysis
using the Timoshenko beam model are validated with
the dynamic stiffness method of unidirectional
composite layer beam 6 = 15°. The mode shapes and
their associate frequencies results obtained from the

composite beam using Euler-Bernoulli and Finite Element Timoshenko beam model are very
Timoshenko beam approximations, in this paper.
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similar with those obtained by using the dynamic
stiffness method DSM.

The obtained three first dimensionless frequencies
from modal analysis curves show that the variation of
the transverse shear deformation has influence in
natural frequencies.

The Absolute values of FFT (Fast Fourier
Transform) response result of an impulse force
excitation for various shear deformation values is
presented using a MATLAB program.

The FFT result at the tip for the beam for various
shear deformation 0.02, 0.04, 0.06, 0.08 and 0.1
demonstrate the frequency response of the cantilever
beam. These results explain the influence of the
transverse shear deformation on the frequencies of
resonance of the composite beam, where the 1%
frequency is similar varying the shear deformation
values, a difference between the frequencies of
resonance (2" and 3" frequencies) becomes
remarkable and decrease with the increasing of the
transverse shear deformation. The Absolute value of
FFT increase also with the increasing of shear
deformation.

The frequency response results obtained from the
finite element approximation by using the
Timoshenko and Euler-Bernoulli beam models for the
unidirectional composite beam 6 = 15° give an
important idea for the unidirectional ply orientation
angle section in the first time, and it can be
generalized for laminated thick beams.
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