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Abstract:-The  high performance of  the planetary mixers with two vertical axis  is closely related to the 
degree of prepared concrete homogenization. The freshly concrete homogenization process is influenced 
by the blades vibrational movements because of the alternative bending of the mixer arm, shaped like an 
embedded elastic beam. In order to homogenization process mathematical modelling, the case of a planetary 
mixer with a capacity of 2.5 m3 is considered, for which the bending forces and arrows, the own pulsations, 
as well as the amplitudes of the oscillating movement were analyzed in three cases. In order to make the 
mixing more efficient, the constructive shape, the resistance module and implicitly the stiffness of the arm-
blade system are successively modified, aiming to obtain proper pulsations as close as possible to the 
excitation pulsations of the system and implicitly with movement amplitudes as high as possible in 
conditions of maintaining high reliability. The paper therefore aims an analysis of the parameters variation 
of the arm-blade system vibration movement depending on its elasticity, in order to improve the 
homogenization process for planetary mixers with two vertical axis. 
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1. INTRODUCTION  
 

Planetary mixer arm-blade system can be 
considered viscoelastic element with a single degree 
of release. The arm-blade system movement can be 
considered a viscous damping system forced 
vibration, subjected to harmonic excitations [1,2].  

The planetary mixer arm can be assimilated with 
an embedded elastic beam [10,12], subjected to the 
bending actions, as a result of all the concrete masses 
in front of the blade and the arm portion inside the 
concrete, to which are added the own masses of the 
blade and the arm, reduced at its end.  There are two 
main bending actions, corresponding the two systems 
movements (the two working rotations), during the 
“planetary mixing”[19].   

During the kneading process, on each mixer arm-
blade system acts the harmonic force  

 
𝐹𝐹𝑖𝑖  =  𝐹𝐹0𝑖𝑖 sin𝜔𝜔𝜔𝜔  =  𝐹𝐹01𝑖𝑖 sin𝜔𝜔1𝑡𝑡   +  𝐹𝐹02𝑖𝑖 sin𝜔𝜔2𝑡𝑡  

 
in which  𝐹𝐹0 =  𝐹𝐹01 + 𝐹𝐹02  represents the force 
amplitude (maximum bending force) for the blade i, 
and ω represents the pulsation arm-blade system, 
given by the rotation speeds of the mixer ω1 and ω2,  
in a stable regime [6,13]. 

The vibrational process can be mathematically 
modelled by determining the bending arrows, its own 
pulsations, the elastic constants and the resulting 
oscillating motion amplitudes, for each arm-blade 
system of the planetary mixer [7].   

The homogenization efficiency of the mixture is 
considered much better if the blades pulsations have 
values closer to the two excitation pulsations (of the 
central rotor ω1 and of the each blades rotor ω2) and 
the movement amplitudes are higher [8-13]. 

Ensuring these requirements is conditioned by the 
degree of the arm-blade systems elasticity, the 
superior systems stiffness ensuring increased 
reliability in homogenizing high consistency degree 
concrete, while leading to the mixing performances 
decrease in the case of fluid concrete, with strength 
classes lower [14-18].  

In order to improve the system elasticity, the mixer 
arm can be successively modified, both in shape and 
diameter, resulting smaller resistance modules, 
pulsations closer and closer to the two rotors 
pulsations and higher and also higher movement 
amplitudes[7].  

The calculations performed in three consecutive 
cases for each arm-blade system constructive variant, 
followed by the movement amplitudes graphical 
representation have to highlight : the movement 
amplitudes according to the arm-blade systems own 
pulsations, the pulsations values corresponding to the 
maximum systems amplitudes, and the reporting of 
the arm-blade systems pulsation values, to the values 
of the two excitation pulsations (the one of the central 
rotor and blades own rotors pulsation). 

This study is accomplished for the field of use for 
concrete planetary mixers with different useful 
capacities. It may be considered as a starting point for 
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all mixers with vertical axis research, from point of 
view of the target homogenization degree, taking into 
account the mixing energy consumption. 
 
2. MATHEMATICAL  MODELLING  OF 
THE  HOMOGENIZATION PROCESS AT 
THE PLANETARY MIXER  
 
2.1 Determination of arm-blade systems 
bending arrows for planetary mixer 
 

For the planetary mixer with two vertical axis 
shown schematically in figure 1, the arm-blade 
system is considered as an embedded elastic bar  and  
subjected to bending with composite force F (figure 
2), resulting as an effect of the concrete masses in 
front of the blade and the arm portion inside the 
concrete, to which are added the own masses of the 
blade and of the respective arm portion [10-12].  

The total bending mass of the arm-blade system at 
the mixer shown in figure 1 (for example for the left 
group of blades 1-3) can be determined with the 
relation: 

             𝑀𝑀1 = 𝑚𝑚𝑏𝑏 + 𝑚𝑚𝑎𝑎+𝑚𝑚1+𝑚𝑚2,               (1) 
 in which: 
-𝑚𝑚𝑏𝑏  is the blade mass; 
-𝑚𝑚𝑎𝑎  is the mass of the arm portion inserted into the 
material; 
-𝑚𝑚1  represents the sum of concrete masses in front 
of the blade, during the “planetary” mixing process, 
corresponding to radiuses  𝑅𝑅1𝑖𝑖  ,  𝑅𝑅2𝑖𝑖. 

𝑚𝑚1 = 𝑚𝑚11+𝑚𝑚12                         (2) 
-𝑚𝑚2  represents the sum of concrete masses in front 
of the blade arm during the “planetary” mixing 
process, corresponding to radiuses  𝑅𝑅1𝑖𝑖  ,  𝑅𝑅2𝑖𝑖. 

𝑚𝑚2 = 𝑚𝑚21+𝑚𝑚22                        (3) 
The calculation relations for determining the four 

masses are as follows: 
        𝑚𝑚𝑝𝑝=𝑞𝑞𝑚𝑚x𝑆𝑆𝑝𝑝x𝑔𝑔𝑝𝑝                             (4) 

where: 𝑆𝑆𝑝𝑝 și  𝑔𝑔𝑝𝑝 represent the surface and the 
thickness of the blade, and 𝑞𝑞𝑚𝑚 the density of material 
(steel); 

𝑞𝑞𝑚𝑚= 7,85 kg/dm3 

          𝑚𝑚𝑏𝑏=(ℎ𝑚𝑚-ℎ𝑝𝑝)x𝜋𝜋𝑑𝑑
2

4
x𝑞𝑞𝑚𝑚                  (5)  

in which: ℎ𝑚𝑚 is the concrete layer height in the mixer, 
ℎ𝑝𝑝 is the blade mixer height and d is the mixer arm 
diameter; 

          𝑚𝑚1=𝑆𝑆𝑝𝑝x𝑞𝑞𝑏𝑏x 2𝜋𝜋 x (𝑅𝑅1𝑖𝑖 +  𝑅𝑅2𝑖𝑖)            (6)  

in which: 𝑞𝑞𝑏𝑏 is the density of fresh concrete 
and   𝑅𝑅1𝑖𝑖  ,  𝑅𝑅2𝑖𝑖  are the radiuses of the blade i;  

 𝑞𝑞𝑏𝑏= 2200 kg/m3. 

   𝑚𝑚2= (ℎ𝑚𝑚-ℎ𝑝𝑝)x 𝜋𝜋𝑑𝑑
2

x 2π (𝑅𝑅1𝑖𝑖 +  𝑅𝑅2𝑖𝑖) x𝑞𝑞𝑏𝑏   (7) 
 

a) Calculation of angular deformation and 
maximum arrow [10-12] 

For the case of the arm-blade system considered 
as an embedded beam of length l, subjected to the 
action of force F produced by the bending masses 
(figure 2), the maximum angular deformation and the 
maximum arrow are determined by applying the 
following equation: 
    𝐸𝐸𝐼𝐼𝑧𝑧

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=𝐸𝐸𝐼𝐼𝑧𝑧𝜑𝜑 = ∫𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝐶𝐶1 = 𝐹𝐹𝑥𝑥2

2
+ 𝐶𝐶1     (8) 

 
 
 

                         
                                 
 
 
 
                       R11= 1660 mm                      

 
 
 
 
 
                                               130  mm 
                                               
                                                                                  
                                                                                    250 mm  
 
              Figure 1. Planetary mixer  of 2.50 m3,  
                            schematic representation 
 

 
Figure 2. The arm-blade system, assimilated with an 

embedded elastic beam 
 

The integration constant is determined from the 
boundary condition x=l, 𝜑𝜑=0, that is it results 

     𝐶𝐶1= - 𝐹𝐹𝐹𝐹
2

2
                             (9) 

Angular deformation 𝜑𝜑 can be written like this: 

  ω 

R24 = 830 mm 

D=3470 mm 

         hm= 580 mm  

30 rot/min(ω2) 

                                                                                        
1230 mm 

R21= 830 mm 

  30 rot/min (ω2) 

15 rot/min ( ω1) 
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    𝜑𝜑= 1
𝐸𝐸𝐼𝐼𝑧𝑧

 (𝐹𝐹𝑥𝑥
2

2
 - 𝐹𝐹𝐹𝐹

2

2
)                             (10) 

Maximum rotation (angular deformation) occurs 
in the embedding, for x=0: 

𝜑𝜑
𝑚𝑚𝑚𝑚𝑚𝑚= 𝐹𝐹𝐹𝐹2

2𝐸𝐸𝐼𝐼𝑧𝑧
  
                            (11) 

 

b) Maximum deflection calculation [10] 
Integrating relation  (8) we have: 

𝐸𝐸𝐼𝐼𝑧𝑧ν=∫( 𝐹𝐹𝑥𝑥
2

2
- 𝐹𝐹𝐹𝐹

2

2
) 𝑑𝑑𝑑𝑑+𝐶𝐶2 =

𝐹𝐹𝑥𝑥3

6
- 𝐹𝐹𝑙𝑙

2𝑥𝑥
2

+ 𝐶𝐶2    (12) 

The integration constant is determined from the 
boundary condition x=l, ν=0 

0=𝐹𝐹𝑙𝑙
3

6
− 𝐹𝐹𝑙𝑙2

2
+ 𝐶𝐶2 , 

    from which    𝐶𝐶2 =
𝐹𝐹𝑙𝑙3

3
                                    (13)      

The deflection can be  expressed like this: 

     f=ν= 1
𝐸𝐸𝐼𝐼𝑧𝑧

(𝐹𝐹𝑥𝑥
3

6
− 𝐹𝐹𝑙𝑙2𝑥𝑥

2
+ 𝐹𝐹𝑙𝑙3

3
)               (14) 

The maximum arrow occurs at the free end, for 
x=0: 

     𝜈𝜈𝑚𝑚𝑚𝑚𝑚𝑚= 𝑓𝑓= 𝐹𝐹𝑙𝑙
3

3𝐸𝐸𝐼𝐼𝑧𝑧
                            (15)                    

 
2.2 The parameters of forced vibrations 
 

Characteristic physical sizes are: 
- maximum deflection of the arm-blade system:   

𝑓𝑓 = 𝐹𝐹𝑙𝑙
3

3 𝐸𝐸𝐸𝐸
 

- disturbance force:  𝐹𝐹𝑖𝑖 =  𝑀𝑀𝑖𝑖𝜔𝜔𝑖𝑖
2𝑓𝑓𝑖𝑖                   (16)  

- elastic constant of the system: 𝑘𝑘𝑖𝑖 = 𝑀𝑀𝑖𝑖𝜔𝜔𝑖𝑖
2     (17) 

- own pulsation: 𝜔𝜔𝑖𝑖 = �
𝑔𝑔
𝑓𝑓𝑖𝑖

 = � 3𝐸𝐸𝐸𝐸
𝑀𝑀𝑖𝑖𝑙𝑙𝑖𝑖3

 ,               (18) 

in which: Mi is the total bending mass (sum of the 
masses) and l= R2i (radius) for each blade, E – the 
modulus of elasticity of the steel E= 2,1 x 105 N/mm2, 
and I=Iz - is the axial modulus of resistance, 
determined with the relation:  

       I= 𝜋𝜋𝑑𝑑
4

64
 ,                            (19)                     

in which d is the diameter of mixer arm. 
For each blade we consider the harmonic forces   𝐹𝐹𝑖𝑖= 
𝐹𝐹0𝑖𝑖 sin𝜔𝜔𝜔𝜔, and the force amplitude for the blade i, is 
𝐹𝐹0𝑖𝑖 =  𝑀𝑀𝑖𝑖g in which 𝑀𝑀𝑖𝑖 represents the total bending 
mass, calculated with relation (1). 

The amplitude calculation formula for each blade 
is as follows [1]: 

         𝐴𝐴𝑖𝑖= 
𝑀𝑀𝑖𝑖𝜔𝜔𝑖𝑖

2𝑓𝑓𝑖𝑖
�(𝑘𝑘𝑖𝑖−𝑀𝑀𝑖𝑖𝜔𝜔𝑖𝑖2)2+𝑐𝑐𝑖𝑖2𝜔𝜔𝑖𝑖2

              (20) 

where we have: 

         ci= 2ξ�𝑘𝑘𝑖𝑖𝑀𝑀𝑖𝑖                             (21) 
in which ξ= 0,2 is the viscoelastic system damping 
factor [1]. 
 
3. DYNAMIC MODELLING OF 
OSCILLATOR SYSTEM  FOR THE CASE 
OF THE PLANETARY MIXER WITH TWO 
VERTICAL AXIS OF 2.50 M3 
  

3.1. Case 1 – Based Mixer 
 

It is consider the case of the planetary mixer with 
two vertical axis of capacity 2.50 m3, shown 
schematically in figure 1 and constructively in figure 
3, having the following technical and technological 
characteristics [19]: 
- standard dimensions: D=3470 mm; ℎ𝑚𝑚= 580 mm; 
H =1230 mm;  
- engines power: 2 x 45 kW; 
- central rotor speed: nr1= 15 rot/min; 
- blades rotors speed: nr2= 30 rot/min 
- number of blades: 3+ 3 pieces; 
- the diameter of mixer arm: 𝑑𝑑 = 46 mm; 
- axial resistance modulus, 𝐼𝐼𝑧𝑧 =21.96 x 104 mm4 

- the blades radiuses (on the left side):   
 𝑅𝑅1= 830 mm;  𝑅𝑅2= 755 mm;  𝑅𝑅3= 680 mm; 
- the blades radiuses (on the write side):   
 𝑅𝑅4= 830 mm;  𝑅𝑅5= 755 mm;  𝑅𝑅6= 680 mm 
- the blade surface: Sp= 25 cm x 13 cm = 325 𝑐𝑐𝑐𝑐2 
- the blade mass calculated with relation  (2), 
considering  𝑔𝑔𝑝𝑝 = 1.8 cm, it results: 𝑚𝑚𝑝𝑝 = 4.6 kg. 
The excitation pulsations of the system are: 

       𝜔𝜔𝑟𝑟1 = 𝜋𝜋𝑛𝑛𝑟𝑟1
30

                            (22)  

 from which it results ωr1= 1,57 rad/s. 

 
     Figure 3.The planetary mixer of  2.50 m3 capacity 
             𝜔𝜔𝑟𝑟2 = 𝜋𝜋𝑛𝑛𝑟𝑟1

30
  ,  

  from which it results ωr2= 3.14 rad/s. 
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Figure 4. Arm constructive shape in the initial version - 

case 1 
 

Applying the relations (1) - (21) for the planetary 
mixer of 2.5 m3 capacity in the initial version, for 
determining the vibration movement parameters for 
the blades situated on the left group (blades no. 1, 2 
and 3), we obtain the values from table 1. 
 
Table 1. Parameters values for the arm-blade systems in 

the initial version- case 1 
Blade 

no. 
Mi (kg) ωi rad/s) ki (N/m) Ai (m) 

1 2246.35 10.39 242606.9 0.23 
2 2024.3 12.60 321739.5 0.16 
3 1842.1 15.56 446283.8 0.11 

 
3.2. Case 2 - Stiffness variaton of the arm-
blade system, by constructive mixer arm 
modification (I/2) 
 

The arm-blade system is modified by 
redesigning the arm as in figure 5, in which the 
arm element of diameter d2 and length 3 l / 4 has 
the axial resistance modulus equal to half of the 
value Iz. 

 
 
 
 
 
 
 

 
 
 
 
Figure 5. Constructive shape of the arm in modified 

version - case 2 
 

This change in arm stiffness leads to the 
recalculation of the new arrow of the arm-blade 
system (composed of the arrows sum of the two 
elements of lengths l/4 and 3l/4 and having resistance 
modules I and I/2), according to the relation: 

𝑓𝑓= 𝑓𝑓1 + 𝑓𝑓2= 𝐹𝐹(𝑙𝑙/4)3

𝐸𝐸𝐼𝐼
+ 𝐹𝐹(3𝑙𝑙/4)3

𝐸𝐸𝐸𝐸/2
 = 55𝐹𝐹𝑙𝑙

3 
64 𝐸𝐸𝐸𝐸

      (23) 

in which  I= 𝐼𝐼𝑧𝑧 = 21.96 x 104 mm4 
For the expression of the own pulsation it results: 

    𝜔𝜔 = � 64𝐸𝐸𝐸𝐸
55 𝑀𝑀𝑖𝑖𝑙𝑙𝑖𝑖3

                            (24) 

From the relation for the resistance axial modulus 
we obtain: d2=38 mm. 

Applying the relations (1)- (23), for the three 
blades of the planetary mixer left group, we obtain  
the values figured in table 2. 

 

Table 2. Parameters values for the arm-blade  systems in 
modified version- case 2 

Blade 
no. 

Mi (kg) ωi rad/s) ki (N/m) Ai (m) 

1 2050.22 6.77 93967.5 0.54 
2 1865.6 8.17 124795.9 0.37 
3 1681 10.14 173104 0.24 

 
3.3. Case 3 - Stiffness variaton of the arm-
blade system, by constructive mixer arm 
modification (I/3) 
 

The arm-blade system is modified by redesigning 
the arm as in figure 6, in which the arm element of 
diameter d2 and length 3l/ 4 has the axial resistance 
modulus equal to one third of the value I. 

 
 
 
 
 
 
 

 
 
 
 
Figure 6. Constructive shape of the arm in modified 

version – case 3 
 

This change in arm stiffness leads to the 
recalculation of the new arrow of the arm-blade 
system (composed of the arrows sum of the two 
elements of lengths l/4 and 3l/4 and having resistance 
modules I and I / 3), after the relation: 

        𝑓𝑓= 𝑓𝑓1 + 𝑓𝑓2= 𝐹𝐹(𝑙𝑙/4)3

𝐸𝐸𝐸𝐸
+ 𝐹𝐹(3𝑙𝑙/4)3

𝐸𝐸𝐸𝐸/3
 = 82𝐹𝐹𝑙𝑙

3 
64 𝐸𝐸𝐸𝐸

   (25) 

The relation for pulsation calculation becomes: 

         𝜔𝜔 = � 64𝐸𝐸𝐸𝐸
82 𝑀𝑀𝑖𝑖𝑙𝑙𝑖𝑖3

                         (26) 

d=d1                 I 

       l=Ri 

      I       I/2 

l/4 

            l= Ri 

d1        d2 

l/4 

            l= Ri 

       I/3 

d1        d2 

  I 
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From the relation for the resistance axial modulus 
we obtain: d2=35 mm. 

Applying the relations (1)- (26), we obtain the 
values figured in table 3. 

 

Table 3. Parameters values for the arm-blade systems in 
modified version – case 3 

Blade 
no. 

Mi (kg) ωi rad/s) ki (N/m) Ai (m) 

1 1976.6 5.65 63145.6 0.78 
2 1798.6 6.82 83704.6 0.53 
3 1620.7 8.46 116106.3 0.35 

 
4. THE MOVEMENT AMPLITUDE 
VARIATION IN RELATION TO THE 
BLADES PULSATIONS, FOR 
PLANETARY MIXER OF 2.50 M3  
 

In the figure 7 is shown the movement amplitude 
variation depending on the arm-blade systems 
pulsations for planetary mixer, in the initial version - 
case 1. The graph represents the values of the 
amplitudes calculated by relation (20), by insertion 
the blade pulsations, the calculated masses, the elastic 
constants and the damping factor values. The graph 
shows the motion damping mode for the blades on the 
left group, starting from the blade number one the 
farthest from the own rotor, with a maximum 
amplitude of 0.236 m and up to the blade number 
three closest to it, with a maximum amplitude of only 
0.105 m.  The graph also shows the central rotor 
excitation pulsation 𝜔𝜔𝑟𝑟1   and the blades own rotor 
pulsation 𝜔𝜔𝑟𝑟2 ) to highlight the blades amplitudes 
values when passing through this pulsations values. It 
is observed the amplitude decrease with the blade 
position close to rotor, at the same time the pulsations 
increase at values more and more distant from the two 
excitation pulsations.      

 
Figure 7. Amplitude variation depending on the arm –

blade pulsation in case 1 

Figure 8 shows the graphical representation of the 
motion amplitude variation for case 2, which 
indicates the improved effect of the arm-blade system 
elasticity increasing on the motion damping degree, 
starting from the blade farthest from the own rotor 
(the first), with a amplitude maximum value of 0.556 
m, clearly superior to the previously presented case 
and up to the blade closest to it (the third), with the 
maximum amplitude of 0.247 m. There is an obvious 
amplitudes increase in relation to the previous 
version, as well as the blades own pulsations decrease 
in the sense of approaching the two excitation 
pulsations values. 

 
Figure 8. Amplitude variation depending on the arm –

blade pulsation in case 2 

 
Figure 9. Amplitude variation depending on the arm –

blade pulsation in case 3 
 

Figure 9 shows the movement amplitude variation 
depending on the blades pulsations for case 3, in 
which the pronounced increase influence of the 
system elasticity on the damping phenomenon 
attenuation is observed, starting from the blade 
farthest from the own rotor (the first), having the 
maximum amplitude reaching at 0.798 m and up to 
the blade closest to it (the third), with a maximum 
amplitude of 0.356 m. The pulsation values are 
reduced to half of the values obtained in the initial 
case (the planetary mixer without arm-blade systems 
constructive modifications), approaching even more 
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much near the rotors pulsations values and the blades 
amplitudes close to the rotor increase to values 
comparable to the initial ones, for the blades located 
away from the rotor. 
 
5. CONCLUSIONS 
 

In accordance with the results presented in tables 
1-3 and in the graphs from figures 7-9, the following 
conclusions can be summarized: 
 in case 1, the arm-blade systems vibration 

movement for the planetary mixer with two 
vertical axis of 2.50 m3 is characterized by high 
blades pulsations in relation to the excitation 
pulsations, as well as relatively low amplitudes, 
indicating the motion damping high degree; 

 the mixer arm redesign presented in case 2 
brings a system elasticity improvement, in the 
sense that there is an obvious movement 
amplitudes increase and the blades own 
pulsations are significantly closer to the rotors 
pulsations, which can bring a materials 
homogenization improvement at mixing; 

 the system stiffness change presented in case 3 
leads to blades pulsations even closer to the 
excitation pulsations and the amplitude values 
indicates a very good homogenization, also the 
arm-blade system resistance module ensures in 
this conditions sufficient operational reliability, 
even in the case of high strength concrete 
mixing; 

 the successive mixer arm constructive shape 
modification, with the effect of the arm-blade 
system elasticity increasing especially in case 3, 
considered the best redesigning  arm solution, 
led to the decreasing  of the blades movement 
damping degree, allowing the materials mixing 
performances increase, with maintaining 
optimal wear resistance in the event of severe 
operating conditions; 

 the case 3 represents the best solution to redesign 
the arm-blade system, due to the new arm shape 
and also the new arm diameter (implicitly the 
new composed resistance modulus of the arm-
blade system), which can assure sufficient wear 
resistance in operation for kneading mixture 
with more high density and also the mixing 
energy consumption is lower in this case. 
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