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Abstract: - In this paper we present a general method to obtain the equivalent system for an arbitrary planar 
system of cylindrically jointed bar. The equivalent system is one for which the displacement of the origin 
(the point at which all bars are jointed) is equal to the displacement of the same point for the original system. 
It is proved that, in general, any system of bars fulfilling some additional conditions is equivalent to a 
system of two bars. This equivalence is valid only for small deformations of the system. An example 
highlights the theory. 
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1. INTRODUCTION 
 

A general system of planar bars may be considered 
from two approaches. The first approach assumes that 
the deformations of bars are small, so some linear 
approximations may be performed [1-6, 8]. The 
second approach considers that the deformations of 
bars may be arbitrary, the only condition being that 
the linear relation between the forces and the 
deformations holds true [7, 10]. In the last situation 
some additional assumptions referring to the shape of 
the deformed bars (when not all of them are 
cylindrically jointed) are made in order to simplify 
the system of equations. Even if all the bars are 
cylindrically jointed the obtained system is no longer 
a linear one and there exist many difficulties for its 
solving. 

In this paper we discuss the problem of the 
equivalent system of an arbitrary system of planar 
bars cylindrically jointed. We define the equivalent 
system that one with a minimum number of bars, 
which present the same displacements of the point at 
which the bars are jointed as the original system. It is 
obvious that this equivalent system must contain at 
least two bars. We will prove that in the general case 
two bars are sufficient in order to characterize the 
equivalent system 

In a previous paper [11] we have studied the 
vibrations of such arbitrary planar system of bars. The 
main assumption is that there exists no pair of bars 
situated on the same straight line; this assumption is 
also considered in this paper. 
 

2. MECHANICAL SYSTEM 
 

One considers the system in Fig.1 consisting in n  
bars iOA , ni  ,1= , for which one knows: the length of 
each bar il , the elasticity modulus of each bar iE , and 
the cross-sectional area of each bar iA . In addition, 
the angles iα  formed by the directions iOA  of the bar 
i  and the positive direction of the Ox  - axis are given 
and ji α≠α , π+α≠α ji  for any nji  ,1 , = , ji ≠ . 
 

 
Figure 1. The mechanical system 

 
The bars are cylindrically jointed at the points iA  

and at the point O . 
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The system is acted by a force P  of components 
xP  and yP  at the point O . In these conditions, the 

system is deformed, the point O  arriving at the point 
O′ , the displacements being x∆  and y∆ . 
 
3. THE EQUIVALENT SYSTEM 
 

The displacements x∆  and y∆  are obtained from 
the linear system  
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and the system (1) becomes 
xPyBxA =∆+∆ , yPyCxB =∆+∆ , (4) 

that is, a linear system of two equations with two 
unknowns. 

The determinant ∆  of the system (4) reads 
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First of all, we will prove that 0>∆ . 
Taking into account the notations, it results 
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and since ji α≠α , π+α≠α ji , for any ji ≠ , one 
gets 0>∆ . 

We will prove now that the system reduces to a 
system with only two bars.Let us denote these bars by 
1 and 2, their elastic parameters being 1k  and 2k , and 
the bars form the angles 1θ  and 2θ  with the positive 
direction of the Ox  - axis. 

The system of two bars leads to the displacements 
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The systems (4) and (7) have the same solution if 
and only if  
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Summing the equations (8) and (10) one gets 

CAkk +=+ 21 , (11) 
while calculating the determinant, it results 
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Further on, we will assume that ( ) 1sin 12
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Let us observe that 01 >k  and 02 >k . 

Further on, we will consider that 
212
π

+θ=θ . 

One gets 
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1
2

21
2

12
2

21
2

1 sincoscoscos θ+θ=θ+θ kkkk  (16) 

1
2

21
2

12
2

21
2

1 cossinsinsin θ+θ=θ+θ kkkk , (17) 

. sincossincos
sincossincos

112111

222111

θθ−θθ=
=θθ+θθ

kk
kk

 (18) 

From the condition 
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We have to prove the relations 
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Expression (24) is equivalent to 
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4. PARTICULAR CASES 
 

i)  The first particular case is defined by 0=B . 
From the relations (14) one obtains either 01 =k , or 

02 =k . Let us assume that 02 =k . The expressions 
(8), (9) and (10) offer 

Ak =θ1
2

1 cos , 0sincos 111 =θθk , 
Ck =θ1

2
1 sin , 

(29) 

wherefrom 01 =θ , 
21
π

=θ , π=θ1 , or 
2

3
1

π
=θ  and, 

consequently 0=A  or 0=C ; it results 0=∆  and 
from expression (6) one gets 1α=αi  or 

π+α=α 1i , for all 2≥i , which is impossible, 
according to our main assumption that the exists 
no pair of bars situated on the same straight line. 

ii) The second case is characterized by CA = . 
From the expressions (14) one gets 
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5. EXAMPLE 
 

For the system in Fig. 2 one knows kk =1 , 

kk 22 = , 
23
kk = , 

2
3

4
kk = , and the angles 

41
π

=α , 

3
2

2
π

=α , 
6

7
3

π
=α , 

6
11

4
π

=α , wherefrom 

 

 
Figure 2. Example. 
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The original system is equivalent to one of the 
system captured in Fig. 3, a) or 3, b). 

 
Figure 3. Solution of the Example. 

 
6. DISCUSSIONS AND CONCLUSIONS 
 

The calculations are performed for small 
deformations of the bars both for the initial and the 
equivalent systems of bars. The equivalent system is 
not unique. One may observe that we assumed 

( ) 1sin 12
2 =θ−θ , which is not a necessary condition. 

Depending on the value chosen for ( )12
2sin θ−θ  one 

may obtain another equivalent system. The case 
( ) 0sin 12 =θ−θ  is not considered here because it 

imposes supplementary conditions for the initial 
system. The condition 0≠B  is not imposed from 
the beginning. It was a consequence of the 
mathematical calculation. 

The solutions presented in Fig. 3 are not the 
only solutions for ( ) 1sin 12

2 =θ−θ . The other two 
solutions are the symmetrical of the first two with 
respect to the Ox  - axis. 

It is also possible to impose the angles 1θ  and 2θ  
resulting the values 1k  and 2k , where 12 θ≠θ , 

π+θ≠θ 12 . 
Usually the positions of the new bars are given, 

that is one knows the jointing points 1B  and 2B , and 
the lengths 1l  and 2l  of these new two bars. One 
calculates the elastic parameters 1k  and 2k , and 
obtains the values 11AE  and 22 AE , ( iiii lkAE = , 

2 ,1=i ). Since the values iE  are known, it results the 
cross-sectional areas of the bars. 

The calculations are similar for bars composed 
from different materials. 

One big challenge is the following one: does the 
equivalent system satisfy the conditions of small 
deformations and the tensions in the two bars do not 
exceed the admissible tensions? This is an open 
question which will be discussed in our future works. 
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