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Abstract: - The characterization of the musical timbre, which allows the quantitative evaluation of audios,
is still an open-ended research topic. This paper evaluates a set of dimensionless descriptors for studying
musical timbre in monophonic recordings of woodwind instruments from the TinySOl audio library,
considering the region of frequencies common to all instruments in their three dynamic levels (pianissimo,
mezzo-forte, and fortissimo). These descriptors are calculated using the spectra obtained from the Fast
Fourier Transform (FFT) using the Python programming language. From the analysis of the distribution of
the coefficients, it was possible to verify that the Affinity coefficient (A) allows discrimination in all octaves
of musical sounds. The analysis of the data through the empirical distribution of the coefficients shows that
the timbral variations due to the dynamics are reflected through the coefficients Sharpness (S) and Mean
Affinity (MA). The coefficients are examined using the Principal Component Analysis (PCA), and it was
observed that the variability in the distribution of the first principal component is mainly due to the
Sharpness (S) and Mean Contrast (MC) coefficients (~55%), and in ~43% by the Affinity coefficient.
Similarly, the variation in the second principal component is due to 62 % of the MC coefficient and 49%
due to MA. It is concluded that the proposed descriptors are sufficient to differentiate the aerophones

studied by octaves and musical dynamics.
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1. INTRODUCTION

Timbre is a general property that allows
distinguishing different sounds with the same
duration, pitch, and intensity [1]. Timbre is associated
with the source of the sound. In musical instruments,
it is common to make an analogy with "color" of the
sound. Its quantification as a measurable magnitude
is an open-ended topic of research, even in the case of
monophonic sounds [2-3]. The analysis of musical
timbre can be approached from two complementary
perspectives: firstly, the one that is related to the
psychophysical perception of sound by the listener
who discriminates and identifies the source of the
sound; second, focused on the acoustics that is related
to the description, composition, and distribution of
harmonics and partial frequencies (overtones) that
accompany a given sound.

This work adopts the second approach, following
the original idea of the physicist Georg Simon Ohm
(1789-1854) according to which "the difference in
timbre of the different sounds comes only from the
presence of harmonics and their relative intensity"
[4]. The advent of digital technology for the recording

and reproduction of musical sounds shows that the
collection of frequencies and amplitudes of the
spectral decomposition, by means of the Fourier
Transform (FFT) contains sufficient timbral elements
that allow the univocal reproduction of the generated
sounds for musical instruments.

The psychoacoustic aspects of timbre are
important for the complete perception of musical
sound. However, for the analysis of monophonic
sounds (the focus of this paper), the basic
characteristics of timbre variations due to changes in
the octaves of the musical scale, the type of musical
instrument, and intensity variations must also be
considered. All these variations are manifested in the
FFTs of the digitized sound, independently of the
environmental and stimulus-response variations
perceived by the listener. For a detailed approach that
considers magnitudes and psychoacoustic techniques
applied to musical timbre, see Caetano et al. and
references there in [3].

An important research question is how to quantify
or express musical timbre variations resulting from
changes in the octaves of the musical scale, the type
of musical instrument, and the intensity level from the
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Fourier spectrum? What elements of the timbral
variations can be extracted from an analysis based on
the FFT of the audio records? To address these
questions, the musical timbre will be analyzed from a
set of woodwind aerophones audio records,
evaluating the change in the timbral coefficients
proposed by Gonzalez and Prati [5]. If these sets of
coefficients characterize the timbre properties of the
FFTs of the musical sounds, then the following
question is valid: How the changes in each particular
coefficient for each specific timbral variation are
distributed?

Aerophones, according to the Sachs-Hornbostel
organological classification [6], are a family of
musical instruments characterized by the use of air as
avibrating material. Aerophones are made up of tubes
or ducts inside which a longitudinal wave of
compressions and rarefactions of the air contained in
it propagates, forming standing waves that generate
the sound. These standing waves have zones of zero
vibration and maximum pressure (nodes) and zones
of maximum vibration and zero pressure (tops or
bellies). In the gas column, sinusoidal pressure
variations are out of phase by 90 degrees with respect
to particle displacement variations. The lowest note
of these instruments is achieved by covering all its
holes (by means of keys or fingering) so that the
column of air inside it has a maximum length. The
column is shortened by uncovering the holes in
succession starting at the open end.

Metal aecrophones (more precisely brass: trumpets,
tubas and trombones, among others) are classified
according to the extraction forms of the vibrating
material (of the air in the aerophones), where the air
is excited by the vibration of the performer's lip, and
in wooden aerophones (whose name alludes to their
ancient construction) by the vibration of a reed
(double or simple) or against an edge (bevel
mouthpiece) [6].

This study is limited to Western orchestral music,
therefore the sample of wooden aerophones includes
the most common aerophones in symphonic
orchestration: Bassoon (Bn), Oboe (Ob), Transverse
Flute (F1), and Clarinet (CIBb). The selection of the
family of wooden aerophones is justified as they have
the greatest timbre diversity and more melodic
possibilities working as a solo instrument within a
symphony orchestra, but also presenting well-
differentiated timbre characteristics when they work
as a set of instruments [7]. On the other hand, the set
of monophonic sounds in Western orchestral music is
a finite number of 96 different tones, which constitute
the tempered musical scale, and allows, in principle,
to delimit the problem of the acoustic characterization
of their timbre. Then, the acoustic analysis is limited
to the common tessitura of the mentioned aerophones:

B3 to D#5 of the tempered musical scale, that is,
between 246.9 Hz and 622.3 Hz.

From the perspective of acoustics, the initial and
boundary conditions determine the vibration of a
sound body (musical instrument) when producing a
sound. This is, in principle, made up of a finite set of
frequencies, where the most important one is the
fundamental and the others can be concordant
(harmonics) with it, or they are discordant (overtones
or partials).

Harmonics are modes of vibration characterized
by tones that have a natural scale relationship with the
fundamental frequency or pitch. On the other hand,
overtones do not have this characteristic natural
scaling. The number of harmonics and overtones,
their relative intensities, and the distribution of sound
energy among them determines the specificities of
timbre that characterize the sound body and are
specific to each musical instrument [8,9]. In
acoustics, woodwind instruments are considered
resonant tubes where the gas, and not the cylinder that
delimits it, is the vibrating body. They all have an
open end where reflection occurs, generating the
standing wave.

The mouthpiece drive, except in the clarinet, is
open-end, so a node for the fundamental sound is
formed in the middle of the two ends. Furthermore,

the frequency of the nth harmonic follows the

o c .
relationship f,, = nf, = %, where C; is the speed

of sound in the air column and L is the length of the
tube. In tubes with a closed end there will be a node
at the closed end (embouchure) and an antinode at the
free end, so the fundamental frequency will have a
node twice as long as the open case, and
consequently, only even harmonics are present.

The Clarinet behaves as if it were a closed
resonant tube: a node is formed near the embouchure
(reed) and an antinode is formed a little further from
the output end, completely suppressing the second
harmonic and attenuating the fourth, although having
a single reed embouchure and the semi-conical
construction of the clarinet tube (with conical parts)
causes some even (6th and 8th) harmonics to be
registered [10]. The shape of the tube establishes
limitations to the propagation of the plane wave
within it, the most used geometries being the straight
cylinder (vertical flutes and Clarinet) and conical
cylinders such as in the Oboe, Bassoon, Transverse
Flute, and Saxophone. The embouchures also differ
in the wooden aerophones: double-reed (Bassoon and
Oboe), simple (Saxophone and Clarinet), and direct
(bevel-shaped like the Transverse Flute).

Therefore, the timbral characteristics of the
aerophones will be delimited or distinguished by the
particular characteristics of the embouchure, the
shape, and the length of the resonant tube. It is
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expected that the timbre variety of the aerophones is
linked to the propagation of the longitudinal wave in
the gas column, subject to the specificities of the
geometry and the form of vibration generated in the
embouchure.

It is intended to study the common characteristics,
as an organophonic group, of woodwind musical
instruments and their particularities that distinguish
the individual timbre of each one, from the
perspective of physical acoustics.

For this, the spectra obtained from the audio
records will be analyzed in their common tessitura, in
monophonic sounds of the tempered musical scale,
comparing the Fourier Transforms (FFT) through
previously selected timbre quantifiers or acoustic
descriptors (section 2). The results of the comparison
of the characteristic spectral signatures of the
aerophones, varying the dynamics (pianissimo pp,
mezzo-forte mf, and fortissimo ff) are shown in section
3. In section 4 the empirical distribution of the
coefficients is estimated, in addition to a PCA
analysis to assess the contribution of the coefficients
in the differentiation of woodwind instruments by
octaves and dynamics. In the last section, the
conclusions and expectations for the general
understanding of the musical timbre are presented.

2. METHODOLOGY
2.1. Specifics of audio recordings

In this study, a subset of the open-source TinySOL
[11] sound library is used. This audio library contains
recordings of individual sounds in the WAV audio
format with minimal loss, sampled at 44.1 kHz on a
single channel (mono) at 16-bit depth. TinySOL's
audio recordings consist only of sounds played in the
so-called "ordinary" style and in the absence of mute.
This library has been used in projects related to timbre
perception, computer-assisted composition, and
intelligent systems for musical orchestration [12-15].
In general, it is a library that can be used as a data set
to train and/or evaluate musical information retrieval
(MIR) systems, for tasks such as instrument
recognition, and estimation of fundamental
frequencies, among others [11].

2.2 Techniques for obtaining FFT and PCA

In each of the audios from the TinySOL library,
the FFT was calculated and not STFT because this
work is only analyzing monophonic audio recordings
without considering the temporal variation of the
sound. Then, the characteristic frequency spectra
were obtained for each sound and musical instrument
considered in this study. For this, the SciPy Python

library module [16-17] was used, and then the
"Scipy.signal.find peaks" function was used to
calculate the local maximums with the parameters
height = 0.01 (1% of the maximum height) and
distance = 50 (peaks should be at least 50 points apart
from each other). This function takes a 1-D array and
finds all local maxima by a simple comparison of
neighboring values. From this function, we were able
to know the amplitude of each overtone.

From this calculation, the tables of the maximum
frequencies, expressed in Hertz (Hz), with relative
normalized amplitudes with respect to the maximum
amplitude value recorded in each FFT spectrum were
constructed.

The calculation of the coefficients, for each
instrument, was carried out with the frequency
spectrum of the common region of the four studied
acrophones and from these data, a table (Pandas
dataframe) was built on which the empirical
distribution of the coefficients was calculated using
Principal Component Analysis (PCA). PCA is a
common exploratory data analysis and data reduction
technique that transforms data from higher
dimensions to lower dimensions while preserving as
much information as possible. The original data is
projected into the Principal Components (PC),
promoting a change of basis of the space. It does so
by creating new uncorrelated variables that
successively maximize variance.

The PCs are found solving an
eigenvalue/eigenvector problem [18]. For this
analysis, we used the scikit-learn library [16], a free
statistical modeling and data analysis library for
Python.

2.3 Timbral coefficients

The FFT spectrum of an audio record is essentially
a discrete collection of N frequencies (f}) and N
amplitudes (a;). On the other hand, there are only 96
possible monophonic musical sounds in the tempered
scale of Western orchestral music, spread over eight
different octaves. Each of these 96 possible musical
sounds has a single fundamental pitch or frequency
(f0)-

Figure 1 illustrates the Fourier spectra of the
selected aerophones for the musical sound A of the
fourth octave (A4, fi= 440 Hz).

It can be observed that: the centroid or average
value of the frequencies (black arrow on the
horizontal axis) is far from the fundamental frequency
in each case; the fundamental frequency does not
always have the maximum amplitude (Oboe), the
number N partial frequencies are different in each
instrument and the f; frequencies are not always
integer multiples of fj (as in the third maximum of
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the bassoon), the maximums are always decreasing in
some cases (Clarinet) or increasing at the beginning
(Oboe), and the average values of the amplitudes and
partial frequencies are different for each musical
instrument.

Transverse Flute A4 Clarinet A4

L el

0 1000 2000 000 2000 5000

1000 00 3000 000 5000

Oboe A4 Bassoon Ad-

N (S s o

] 1000 2000 000 000 5000 0 1000 2000 3000 4000 5000

Figure 1. Fourier spectra of sound A4 for the studied
aerophones. The dotted line represents the position of the
centroid.

Thus, each monophonic sound of a considered
musical instrument is characterized by a single FFT
that identifies it. Then, the timbre characteristics
associated with that particular audio must be
contained in the distribution of frequencies and
amplitudes of the FFTs, that is, it must be somehow
inscribed in the corresponding Fourier spectrum.

Comparing the timbral differences of audio
recordings is equivalent to comparing the spectra of
FFTs, and this is not a trivial task. This paper
proposes a way to quantify the differences in the FFTs
through dimensionless coefficients that allow
assessing the following three aspects: the
fundamental frequency, the shape of the partial
frequency distribution (harmonic or not), and the
statistics of the distribution.

Table 1 shows the set of six coefficients, proposed
in [5], that describe and discriminate the timbral
similarities and differences that result from
considering these three aspects for the two variables
contained in the FFT: frequencies and amplitudes.

3. RESULTS: ANALYSIS OF THE FFT

The timbre is related to similarities in the sound of
several tones of the same instrument. Furthermore,
the timbre is related to significant variations between
different musical instruments given the same tone and
intensity; variations due to the change of octaves for
the same instrument; and similar dynamics when it is
executed in different modes (pianissimo, mezzoforte,
and fortissimo) for the same tone and particular
aerophone.

Table 1. Timbral Coefficients associated with the FFT of
monophonic musical sounds [5].

Coefficient | Operational

definition

Description

Relative
measurement of
the centroid with
respect to the
fundamental
frequency

N
1%z, aifi
N
fo Zi:1 ai

Affinity (A) | A=

Relative
measure of the
amplitude of the
fundamental

@y frequency. Note
that S does not
refer to the
Zwicker-
Sharpness used
in psycho-
acoustics.

Sharpness <
() Iiia

Average value of
H the harmony of
Harmoni- N foIf the partial

. — jj jj :
city (H) = Z (— - [—]) frequencies

Deviation from
M regularity in the
Monotony N distribution of
M) = %Z (L) amplitudes with
respect to
frequencies

Mean deviation
of the partial
frequencies from
the average
frequency

Mean
affinity
(MA)

‘I'."r=i|ﬁ_.|?|

MA =
Nf

Mean deviation
of the partial
amplitudes from
the amplitude of
the fundamental

Mean
Contrast
(MC)

frequency

Note: The square brackets in Harmonicity (H) were defined as the
integer division (integer part).

Next, the FFTs of the aerophones of the
considered samples are analyzed for each of these
aspects, using the timbral coefficients of the FFT of
the monophonic audio recordings.

3.1 Tone and Timbre
Given a set of sounds, the timbre of a given

musical instrument, a particular aerophone, for
example, shall present common characteristics. In
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this sense, the timbre is transverse to the frequency or
tone.

The Affinity (A) timbre coefficient reflects this
behavior as shown in Figure 2, where the tonal
variation (by frequency) is compared with the
aerophones in the common tessitura.

Thus, two aerophones, the Oboe, and the Bassoon
are very similar in terms of their construction as
conical resonant tubes with open ends and double
reed embouchure, and present very different values of
affinity among each other, throughout the common
tessitura.

The Affinity (A) also decreases in the Flute as the
sound becomes higher, while the clarinet increases
the value of A in the middle of the scale (note A4 and
higher), and its affinity is greater than in the flute for
the high sounds and similar to those of this one in the
serious sounds.

A ©0o0e
L]
°

B3 C4 C# D4 D¥ B4 F4 FR G4 GH M
10 +

B3 C4 C#4 Di DF E4 P4 FRl GE GH M

240 230 340 330 410 230 540 590 640

Figure 2. Aerophone Affinity comparison

The timbre coefficient of Sharpness (S) as were
defined in Table 1, it's shown in Figure 3, allows us
to distinguish other qualitative timbral aspects of the
aerophones. Notice that Sharpness (S) is not the
psychoacoustics Zwicker sharpness.

For a given set of sounds (a common region to the
considered instruments), the Oboe presents less
resolution of the fundamental frequency with respect
to the set of overtones of the FFT (lower S value) in
relation to the other aerophones.

The Clarinet has higher S values in almost all
common tessitura. In the sounds of the Flute and the
Oboe, the fundamental frequency becomes more
noticeable by having a greater S, proportionally to the
sharpness of the tone of the audio record.

240 290 340 390 440 430 540 580 64
B3 C4 R4 D4 D#4 B4 F4 PR G4 GR A AR B4 c5 (= Ds o5

0 fo(He)
240 200 340 390 a0 490 s40 590 540

B3 C4 CH DI D% E4 F4 FRL G4 GR A1 AR B4 = (=21 [:5] D#5

Figure 3. Aerophone Sharpness comparison. Note that S
does not refer to the psychoacoustics Zwicker sharpness.

3.2 Spectral signatures

The identification of a sound source in general,
and musical instruments in particular, can be done
through the analysis of its Fourier spectrum. The set
of secondary frequencies that are present in a
monophonic sound of a musical instrument
objectively characterizes it.

These secondary frequencies (harmonics and
overtones) do not always have a multiplicity
relationship with the pitch or fundamental frequency,
as only the harmonics correspond to integer multiples
of the fundamental frequency (/o).

The set of harmonics depends, among others, on
the geometry and boundary conditions of the sound
tube of the aerophone [8]. Table 2 compares the
harmonics present in the studied aerophones for the
common tessitura and dynamic mezzo forte (mf).
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Table 2. Set of harmonics depending on the Aerophone
and musical sound

Sound Fl Ob CIBb Bn
1, 3-8,

B3 1-8,10 | 1-12 13 1-5

C4 1-9 1-14,17 1-8* 1-8*
C#4 1-9 1-11,16 1-7 1-5

D4 1-8 1-8,1013 1-7 1-4
D#4 1-8 1-7,9-14 | 1-7,10 | 1-5

E4 1-9* 1-13 1-9* 1-5

F4 1-8 1-10,13 1-5 1-6
F#4 1-9 1-12 1,3-7 | 1-4

G4 1-8 1-12 1-7 1-5,8,11
G#4 1-8 1-12 1-7 1-5,8,11
A4 1-7 1-10 1-4* 1-4*
A#4 1-5 1-10 1-6 1-5

B4 1-7 1-8 1-6* 1-6*

C5 1- 6* 1-8 1-6%* 1-7
C#5 1-10 1-7 1-6 1,2

D5 1-4 1-7% 1-7% 1-3
D#5 1-3,5 1-5% 1-6 1-5%

(*) Denotes degeneration: two different instruments with the

same set of harmonics.
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Figure 4. Aerophone Harmonicity comparison

Note that only harmonic frequencies whose

amplitude (a)) is greater than 1% of the amplitude of
the fundamental frequency (ay) were collected, since
the sound intensities are proportional to the square of

the amplitudes and, consequently, the secondary
frequencies would have intensities of the order of 10
4 with respect to the fundamental frequency,
contributing very little to the formed sound

In general, the presented set of harmonics allows
us to distinguish or identify the aerophone in a given
monophonic sound. However, there are cases where
the sets of harmonics are equal, which has been called
"degeneracy".

However, the timbral coefficient H (Figure 4),
allows us to assess how harmonic the set of secondary
frequencies is or the relative closeness of a certain
secondary frequency, compared to its value of integer
multiplicity of the fundamental frequency. In addition
to the Harmonicity H, the Affinity A of an aerophone
(Figure 2) also allows the aerophone to be
distinguished, in particular for cases of degeneration.
Given a monophonic audio, the aerophone that
generated it can be uniquely discriminated by
obtaining the set of harmonics present in the FFT and
the evaluation of the timbral coefficients.

3.3 Octaves

If the tessitura of each aerophone is considered, it
can be observed (Figure 5) that the

.
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Figure 5. Variation of Affinity in terms of octaves.
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Figure 6. Monotony of the aerophones as a function of
the octaves
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Affinity (A) decreases monotonically with the
increase of the octave for all aerophones, that is, it
decreases as the octave is higher. Without loss of
generality, for the analysis of the octaves, only the
mezzo forte dynamics have been considered, since
the graphs corresponding to the pianissimo and
fortissimo dynamics behave analogously to Figures 5
and 6.

3.4 Dynamics

The execution modes of monophonic sounds with
respect to the average intensity of relative loudness
(dynamics) are called mezzo forte (mf), pianissimo
(pp), and fortissimo (ff) refer that, in the case of
aerophones, the musical interpreter decreases or
increases, respectively, the driving pressure of the air
flow in the sound tube.

However, in general, depending on the instrument
and the performer, such action is accompanied by
slight variations in the absolute pitch and,
consequently, it is not a mere increase in the level in
decibels or physical power (in watts), but results from
variations relative to the fundamental frequency of
the corresponding tone.

For a particular monophonic register of an
aerophone, the variations of the dynamics (pp, mf, and
ff) cause a general decrease in the presence of
secondary frequencies in the corresponding FFT,
suppressing many of them and the harmonics in the
pp mode. Similarly, the ff mode is accompanied by
an increase in the number of audible secondary
frequencies (harmonic or not). Figure 7 shows that the
values of Sharpness (S) decrease in the ff mode in all
aerophones and tessituras, with respect to the
recordings in mf mode, and these with respect to pp.
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Figure 7. Sharpness (S) as a function of dynamics for the
aerophones studied. Note that S is defined in table 1 and
is different from the psychoacoustics Zwicker sharpness.

Note the similarity in the variations of (S) for
Oboe and Bassoon in accordance with their similar
acoustic properties (open conical tube aerophones

with double-reed embouchure). Variations in
dynamics modify not only the amplitude of the pitch
(ap) but also the amplitude ratio between the
fundamental frequency and its partials.

Figure 8 shows how the Mean Affinity varies,
which decreases in the dynamics ff, with respect to the
values of mf and increases in the dynamics ff with
respect to the value myf in all the aerophones.
Likewise, there is a decrease in the value of MA as
the sound becomes less serious, with inverse
dependence on the fundamental frequency, due to the
very definition of the MA coefficient.
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Figure 8. Mean Affinity MA according to the dynamics
of the aecrophones, common tessitura: B3-D#5.

It should be noted that some deviations observed
in particular sounds (A4 fortissimo in the Bassoon or
A#4 pianissimo in the Flute, etc.) are due to playing
techniques, which go beyond the mere increase in
driving force or air pressure in the resonant tube of
the aerophone.

4. DISCUSSION.

The empirical distribution of the descriptors can
be estimated for the data set of the timbral coefficients
of the studied aerophones, considering their complete
tessituras.

The results are shown in Figure 9. We observe that
in effect the Affinity coefficient (A) allows
discrimination in each case the octaves of the musical
sounds.

Note that the increase in the octave is proportional
to the increase in variance in affinity across all
aerophones.

The analysis of the data shows that the timbral
variations due to the dynamics are reflected through
the coefficients S and MA (Figure 10), in accordance
with Figures 7 and 8. The separation of the data is
more conspicuous between dynamics fortissimo and
planissimo.
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Bassoon) by dynamics in the common tessitura.

Table 3. Correlation between timbre coefficients and

reduced PCA variables
X Y
A 0.426 -0.318
S -0.545 -0.178
H 0.348 -0.488
M 0.128 0.038
MA 0.287 0.487
MC -0.550 -0.624
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Figure 11. Principal Component Analysis (PCA) in the
common tessitura region.

Taking into account the common dynamics of
tessitura and mezzo forte, the PCA shows that the
timbral differences between the aerophones can be
reduced to a two-dimensional space of components X
and Y (Figure 11), whose dependence on the
proposed timbral coefficients is shown in Table 3.

Note that M contributes little to the distribution of
the data and that S and MC contribute similarly to the
variable X, as expected since they are variables
associated with amplitudes (Table 1), while Affinity
(A) and Mean Affinity (MA), both associated with
frequencies (Table 1), are proportionally linked in
both operational variables X and Y of the Principal
Components Analysis (PCA). On the other hand, the
PCA shows that 62% of the data is contained in the
operational variable X and therefore the variability in
the distribution of X is mainly due to the coefficients
S and MC (~55%), and in ~43% by the coefficient A.
Similarly, the variation in Y is due in 62% to the
coefficient MC and in 49% due to MA, in agreement
with the results of figures 8 and 10.

5. CONCLUSIONS

It is concluded that the musical timbre in
monophonic audio records can be characterized using
the FFT through six dimensionless coefficients that
we have proposed here. These timbre coefficients
incorporate the information about the distribution of
harmonics and overtones and their amplitudes in
relation to the fundamental frequency. The values of
these coefficients allow devising a timbre space to
describe the variations due to the type of instrument,
the musical note, the octaves, and the dynamics in the
selected wooden aerophones (Oboe, Clarinet,
Transverse Flute, and Bassoon).

In the common tessitura of the aerophone sample
(B3-D#5) the timbre can be distinguished by means
of the relative measure of the centroid with respect to
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the fundamental frequency (Affinity A) varies for
each one, being greater in the Oboe and less in the
bassoon, despite their similar acoustic properties
(aerophones with open conical tubes with a double
reed mouthpiece). Also, in the common tessitura, the
aerophones are distinguished timbrally through the
relative measurement of the amplitude of the
fundamental frequency with respect to the set of
amplitudes of the partial frequencies: major in the
Clarinet and minor in the Oboe. Remember that,
although we use the same name, in this paper
Sharpness S does not correspond to the Zwicker
psychoacoustics definition of sharpness.

The differences in the composition of the
harmonics present in each acrophone and the average
value in the harmony of the partial frequencies
(coefficient H) allow each aerophone to be
distinguished timbrally in the common tessitura, even
when the set of harmonics is the same for two
instruments in a particular sound.

For each instrument, in tessitura, the timbral
variations due to the octave change are shown
through the coefficient of affinity (A) and monotony
(M) in all the aerophones. Affinity decreases
monotonically with the increasing octave, and
Monotony increases in absolute value as the octave
increases.

Timbral variations due to dynamics are reflected
through the Relative measurement of the amplitude of
the fundamental frequency (S) and the average
deviation of the partial amplitudes with respect to the
amplitude of the fundamental frequency (MA). The
values of S and MA decrease in the ff'mode in all
aerophones and tessituras, with respect to the mf
dynamics, and those with respect to pp.

In the common tessitura, the timbral variations of
the set of aerophones can be reduced to two
dimensions: X and Y, through PCA, preserving 80
percent of the data variability from the original space.
It was observed that the variability in the distribution
of X is mainly due to the S and MC coefficients
(~55%), and ~43% by the A coefficient. Similarly,
the variation in Y is due to 62% to the MC coefficient
and 49% due to MA. It is concluded that the proposed
timbre descriptors are effective to differentiate the
studied aerophones by octaves and differences in
musical dynamics.
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