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Abstract: - This paper focused on the fundamental frequency analysis of anti-symmetric FGM sandwich 
circular beams. A fifth-order circular beam theory considering the influence of transverse shear and normal 
strains is developed in this study. Fifth-order terms in terms of thickness coordinates are considered for the 
first time in the displacement field of the beam to solve the free vibration problems of circular beams. The 
theory assumes fifth-order variations of thickness coordinates in axial (tangential) displacement and fourth-
order variations of thickness coordinates in transverse (radial) displacements. Hamilton’s principle is 
applied to derive equations of motion. An exact solution for the frequency analysis of a simply-supported 
circular beam is obtained using the Navier technique. Anti-symmetric FGM sandwich circular beams are 
considered for numerical studies. The material properties of face sheets are graded in the thickness direction 
of the beam according to the power law whereas the core of the beam is made up of isotropic material. The 
fundamental frequencies obtained for different values of radius of curvature (R), the power-law index (p) 
and lamination schemes of S-P-FGM sandwich circular beams are presented for the first time in this study 
and can be considered as the main contribution of this study. For the verification of the present theory, 
fundamental frequencies for straight beams obtained using the present theory are compared with the 
previously published papers and found in good agreement with those. Based on the comparison of the 
numerical results and discussion it is concluded that for the same length and thickness, the value of non-
dimensional fundamental frequency increases as the radius of curvature is decreased. Also, the non-
dimensional frequency decreases as the power-law index increases.  
 
Keywords: - Fundamental frequencies, circular beam, anti-symmetric, functionally graded sandwich, fifth-
order circular beam theory, transverse normal strain. 

 
 
1. INTRODUCTION 
 

Circular beams made up of functionally graded 
advanced composite materials are widely used in 
many industrial structures. Functionally graded 
material (FGM) is a combination of two materials in 
which their properties are continuously varying in 
single or multiple directions according to the different 
gradation rules. The power law is the most popularly 
used rule for the gradation of material properties. 
Circular beams are often subjected to dynamic forces 
or conditions; therefore, vibration analysis is one of 
the most important aspects of the design of FGM 
sandwich circular beams. 

Beam structures made up of homogenous or 
composite materials are analyzed using the theory of 
elasticity. But, the elasticity solution for the free 
vibration analysis of circular beams is difficult due to 
curvature effects. Therefore, researchers have 
developed approximate beam theories which give 
approximate solutions for the vibration problem of a 
circular beam with good accuracy compared to the 
theory of elasticity. The classical beam theory (CBT) 
developed by Bernoulli-Euler [1] gives more accurate 
results for slender beams. Since the CBT does not 
consider the effects of shear deformation, it 
overestimates the fundamental frequencies of the 
thick circular beams. 
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This limitation of CBT is overcome by the 
Timoshenko beam theory [2] (TBT). The theory is 
also known as first-order shear deformation theory 
(FSDT). The TBT is the first approximate theory that 
considers the effects of transverse shear deformation 
and has given improved results over the CBT. 
However, the TBT is also not accurate in predicting 
the global response of the thick circular beams 
because this theory requires problem-dependent shear 
correction factors to account for energy due to shear. 
Also, this theory shows constant transverse shear 
stress across the thickness of the beam which is not 
realistic. This is the reason why researchers have paid 
attention to the development of refined beam theories 
which consider the effects of transverse shear and 
normal deformations along with the rotary inertia. 
These theories are systematically documented by 
Sayyad and Ghugal [3, 4]. Some good studies related 
to functionally graded circular beams are found in the 
literature. Malekzadeh et al. [5]-[6] presented an out-
of-plane free vibration analysis of FGM circular 
beams using the differential quadrature method based 
on the first-order shear deformation theory. 
Alshorbagy et al. [7] presented a free vibration 
analysis of bi-directional FGM beams using the finite 
element method in conjunction with Euler–Bernoulli 
beam theory. Yousefi and Rastgoo [8] presented the 
free vibration analysis of functionally graded spatial 
curved beams based on the first-order shear 
deformation theory and the Ritz method. The material 
properties are graded in the direction of the curvature 
of the curved beam. Piovan et al. [9] have developed 
a model of non-homogeneous and/or FGM curved 
beams. The finite element method is used to discretize 
the motion equations to solve problems of dynamics, 
statics, and buckling. Arefi [10] has presented an 
elastic solution of a curved beam made of 
functionally graded materials with different cross 
sections. Kurtaran [11] presented large displacement 
static and transient analysis of moderately thick deep 
functionally graded curved beams with constant 
curvature using the generalized differential 
quadrature method. Tufekci et al. [12] employed 
Eringen's nonlocal elasticity theory with a classical 
beam model considering the effects of axial extension 
and the shear deformation for the static analysis of the 
nonlocal curved beams. Pydah and Sabale [13, 14]; 
Pydah and Batra [15]; Fariborz and Batra [16] have 
presented static and vibration analysis of bi-
directional functionally graded circular beams. 
Huynh et al. [17] have presented bending, buckling, 
and free vibration analyses of functionally graded 
curved beams with variable curvatures using an 
isogeometric approach based on the Timoshenko 
beam theory. Similarly, Ebrahimi and Daman [18] 

have also applied the Timoshenko beam theory for 
the analysis of curved nanobeam.  

He et al. [19] have developed analytical solutions 
for the bending analysis of functionally graded curved 
beams with different properties in tension and 
compression. 

Zhao et al. [20] have presented free vibration 
analyses of moderately thick functionally graded 
porous curved beams using the first-order beam 
theory. She et al. [21] studied the resonance behavior 
of porous FG curved nanobeams. Wan et al. [22] 
applied the first-order beam theory for the 
geometrically nonlinear analysis of an FGM curved 
beam with variable curvature. Pandey and Pradyumna 
[23] have presented a thermal shock analysis of 
functionally graded sandwich curved beams using a 
layerwise theory. Beg and Yasin [24] presented 
bending, free, and forced vibration of functionally 
graded curved beams in the thermal environment 
using a layerwise theory. Beg et al. [25] performed 
the static and free vibration analysis of porous FGM 
curved beams using third-order beam theory. Nikrad 
et al. [26] have presented a large deformation analysis 
of FGM porous curved beams in a thermal 
environment. The first-order shear deformation 
theory along with the Rayleigh–Ritz method and the 
Newton–Raphson method is used for the analysis. 
Draiche et al. [27] have developed an integral shear 
and normal deformation theory for bending analysis 
of functionally graded sandwich curved beams. 
Belarbi et al. [28]-[29] have developed a finite 
element formulation for the bending, buckling, and 
free vibration analysis of functionally graded 
sandwich curved beams via a higher-order shear 
deformation theory. Vlase et al. [30] presented a 
semi-analytical method to simplify the calculus of the 
eigenmodes of a mechanical system with bars. The 
method is applied to symmetrical structures. 

 
1.1. The shortcomings of the literature 
review 
 

The authors have reviewed plenty of research 
papers on bending, buckling, and free vibration 
analysis of FGM straight as well as circular beams. 
Based on the literature reviewed, the following 
observations are made. 
1. The authors have found plenty of research papers 

on static and free vibration analysis of straight 
FGM sandwich beams using higher-order refined 
beam theories such as Reddy [31], [32], Simsek 
[32], Thai and Vo [33], Vo et al. [34]-[36], 
Nguyen et al. [37]-[38], Sayyad and Ghugal [39] 
-[40], Sayyad and Avhad [41], etc. These are 
selected papers on the vibration analysis of 
straight FGM sandwich beams. There are many 
more research papers available on straight FGM 
sandwich beams [4]. However, many refined 
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theories presented in the past literature do not 
consider the influence of transverse normal 
strains on the frequency analysis of FGM 
sandwich beams.  

2. The authors have found limited literature on the 
free vibration analysis of single-layer FGM 
circular beams. However, the authors do not find 
any research paper on the free vibration analysis 
of S-P-FGM (sigmoid) and anti-symmetric FGM 
sandwich circular beams.  

3. In the previous research, researchers have used a 
third-order expansion of thickness coordinates in 
the displacement field of the refined beam theory. 
However, expansion of thickness coordinates up 
to the fifth-order in the axial displacement 
(transverse shear strain) and up to the fourth-order 
in the transverse displacement (transverse normal 
strain) is not found in the literature.     

This motivates the authors to carry out free vibration 
analysis of anti-symmetric S-P-FGM and sandwich 
circular beams. The novelty of the present study is 
highlighted in the next section.  

 
1.2. The novelty of the present work 
 
1) A fifth-order curved beam theory considering the 

influence of transverse shear and normal strains is 
developed by Avhad and Sayyad [42, 43] for the 
static and free vibration analysis of laminated 
composites, sandwich, and functionally graded 
circular beams. In this article, this theory is applied 
to the free vibration analysis of anti-symmetric 
FGM sandwich circular beams. 

2) A fifth-order circular beam theory is applied for the 
first time to solve the free vibration problems of 
Sigmoid FGM circular beams. 

3) The present theory considers the effects of both 
transverse shear and normal strains.  

4) The frequency results of functionally graded 
sigmoid circular beams can be serving as the 
benchmark for future researchers.  
The equations of motion of the present theory are 

derived using Hamilton’s principle. Exact analytical 
solutions to free vibration problems are obtained 
using Navier’s technique. Fundamental frequencies 
are obtained for two-layered sigmoid (S-P-FGM) and 
three-layered anti-symmetric FGM sandwich (2-2-1, 
2-1-1) circular beams. Effects of the power-law index 
and the radius of curvature on the fundamental 
frequencies of circular beams are investigated. 
 
1.3. The geometry of the circular beam 
 

A simply-supported FGM sandwich circular beam 
is considered in this study. The circular beam has a 
radius of curvature (R), curved length (L) in the x-

direction, unit width (b = 1) in the y-direction, and 
thickness (h) in the z-direction. These geometrical 
details of the circular beam are shown in Fig. 1. A 
sandwich circular beam consists of three layers made 
up of functionally graded material whose thickness is 
distributed among three layers anti-symmetrically. 
The top and bottom layers (face sheets) of the circular 
beam are made up of functionally graded materials 
whereas the middle layer (the core) is made up of 
isotropic material (ceramic). 

 
Figure. 1 Displacement parameters and geometry details 

of the FGM sandwich circular beam 
 
1.4. Material properties of the circular beam 

 
Two types of FGM circular beams are analyzed in 

the present study. The material properties (E, G, µ, ρ) 
of these two types of circular beams are graded across 
the thickness using the power law stated in Eq. (1). 

𝐸𝐸(𝑧𝑧) = 𝐸𝐸𝑚𝑚 + (𝐸𝐸𝑐𝑐 − 𝐸𝐸𝑚𝑚)𝑉𝑉𝑐𝑐(𝑧𝑧)
𝜌𝜌(𝑧𝑧) = 𝜌𝜌𝑚𝑚 + (𝜌𝜌𝑐𝑐 − 𝜌𝜌𝑚𝑚)𝑉𝑉𝑐𝑐(𝑧𝑧)              (1) 

where E(z) is the modulus of elasticity, ρ(z) is the 
density of the material, and Vc (z) is the volume 
fraction function. Subscripts m and c correspond to 
metal and ceramic constituents, and p is the power-
law index. Values of the volume fraction function for 
different layers of the FGM sandwich circular beams 
under consideration are given below. 
 
Type A: Three-layered anti-symmetric FGM 
sandwich circular beams 

Values of the volume fraction function for the 
three-layered FGM sandwich circular beam are given 
by Eq. (2). 

Layer 1: 𝑉𝑉𝑐𝑐(𝑧𝑧) = � 𝑧𝑧−ℎ0
ℎ1−ℎ0

�
𝑝𝑝

   for 𝑧𝑧 ∈ [ℎ0,  ℎ1]

Layer 2: 𝑉𝑉𝑐𝑐(𝑧𝑧) = 1      for 𝑧𝑧 ∈ [ℎ1,  ℎ2]

Layer 3: 𝑉𝑉𝑐𝑐(𝑧𝑧) = � 𝑧𝑧−ℎ3
ℎ2−ℎ3

�
𝑝𝑝

   for 𝑧𝑧 ∈ [ℎ2,  ℎ3]

  (2) 

Through-the-thickness distributions of modulus of 
elasticity (E) for three-layered FGM sandwich 
circular beams are shown in Fig. 2.  
 
Type B: Two-layered sigmoid (S-P-FGM) circular 
beams 

The sigmoid law for the gradation of material 
properties is specifically used for two-layered beams. 
The sigmoid law is a combination of two power-law 
functions (S-P-FGM). Eq. (3) shows the values of the 
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volume fraction function for the two-layered anti-
symmetric (S-P-FGM) circular beams. 

 
Layer1: 𝑉𝑉𝑐𝑐(𝑧𝑧) = 1 + �𝑧𝑧

ℎ
− 1

2
�
𝑝𝑝

 𝑧𝑧 ∈ [−ℎ/2, 0]

Layer2: 𝑉𝑉𝑐𝑐(𝑧𝑧) = �𝑧𝑧
ℎ

+ 1
2
�
𝑝𝑝

     𝑧𝑧 ∈ [0, ℎ/2]
     (3) 

 

 
Figure. 2 Distributions of the modulus of elasticity 

through the thickness of three-layered anti-symmetric 
FGM sandwich circular beam 

 

 
Figure 3. Distributions of the modulus of elasticity 

through the thickness of two-layered anti-symmetric S-P-
FGM circular beam 

Through-the-thickness distributions of modulus of 
elasticity (E) for two-layered anti-symmetric S-P-
FGM circular beams are shown in Fig. 3. However, 
distributions of other material properties (G, µ, ρ) 
through the thickness of the beam follow the same 
trend. 
 
2 A FIFTH-ORDER CIRCULAR BEAM 
THEORY 
 

A fifth-order circular beam theory considering the 
influence of transverse shear strain (𝛾𝛾𝑥𝑥𝑥𝑥) and 
transverse normal strains (𝜀𝜀𝑧𝑧) is developed in this 
study. The theory assumes fifth-order variation of 
thickness coordinates in axial (tangential) 
displacement (w) and fourth-order variations of 
thickness coordinates in transverse (radial) 
displacements. The x-directional (axial) displacement 
(u) consists of the extension, bending, and shearing 
components whereas the z-directional (transverse) 
displacement is a function of both x and z coordinates 
accounting for the effects of transverse normal strain. 
The displacement field of the present fifth-order 
circular beam theory at an arbitrary material point 
within the circular beam is written as per Eq. (4): 

 
𝑢𝑢(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = 𝐹𝐹0 𝑢𝑢0(𝑥𝑥, 𝑡𝑡) + 𝐹𝐹1 𝑢𝑢1(𝑥𝑥, 𝑡𝑡)

+𝐹𝐹2 𝑢𝑢2(𝑥𝑥, 𝑡𝑡) + 𝐹𝐹3 𝑢𝑢3(𝑥𝑥, 𝑡𝑡)
𝑤𝑤(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = 𝑤𝑤0(𝑥𝑥, 𝑡𝑡) + 𝑑𝑑𝐹𝐹2

𝑑𝑑𝑑𝑑
𝑤𝑤1(𝑥𝑥, 𝑡𝑡)

+ 𝑑𝑑𝐹𝐹3
𝑑𝑑𝑑𝑑
𝑤𝑤2(𝑥𝑥, 𝑡𝑡)

          (4) 

 
where 

 

𝐹𝐹0 = �1 + 𝑧𝑧
𝑅𝑅
� , 𝐹𝐹1 = −𝑧𝑧, 𝐹𝐹2 = �𝑧𝑧 − 4𝑧𝑧3

3ℎ2
� ,

𝐹𝐹3 = �𝑧𝑧 − 16𝑧𝑧5

5ℎ4
� , 𝑢𝑢1 = 𝜕𝜕𝑤𝑤0

𝜕𝜕𝜕𝜕
, 𝑢𝑢2 = 𝜙𝜙𝑥𝑥,

𝑢𝑢3 = 𝜓𝜓𝑥𝑥, 𝑤𝑤1 = 𝜙𝜙𝑧𝑧, 𝑤𝑤2 = 𝜓𝜓𝑧𝑧

   (5) 

 

where u and w are the x- (tangential) and z- (radial) 
directional displacements of an arbitrary point of the 
circular beam domain; u0 and w0 are the x- directional 
and z- directional displacements of a point on the 
neutral axis of the circular beam; 1 / (1 + z/R) is the 
Lame’s parameter, and (𝜙𝜙𝑥𝑥,𝜓𝜓𝑥𝑥,𝜙𝜙𝑧𝑧,𝜓𝜓𝑧𝑧) are the 
rotations of a cross-section of the beam. The 
displacement field of transverse displacement shows 
that w = w0 at z = ±h/2 and varies through the 
thickness of the circular beam. Lame’s parameter is 
neglected for the strain calculation of circular beams. 
Eq. (6) shows the non-zero normal and transverse 
shear strains obtained at any point of the circular 
beam using the theory of elasticity.  
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𝜀𝜀𝑥𝑥 = 𝜕𝜕𝑢𝑢0
𝜕𝜕𝜕𝜕

+ 𝐹𝐹1
𝜕𝜕2𝑤𝑤0
𝜕𝜕𝑥𝑥2

+ 𝐹𝐹2
𝜕𝜕𝜙𝜙𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝐹𝐹3
𝜕𝜕𝜓𝜓𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝑤𝑤0
𝑅𝑅

+ 𝑑𝑑𝐹𝐹2
𝑑𝑑𝑑𝑑

𝜙𝜙𝑧𝑧
𝑅𝑅

+ 𝑑𝑑𝐹𝐹3
𝑑𝑑𝑑𝑑

𝜓𝜓𝑧𝑧
𝑅𝑅

𝜀𝜀𝑧𝑧 = 𝑑𝑑2𝐹𝐹2
𝑑𝑑𝑧𝑧2

𝜙𝜙𝑧𝑧 + 𝑑𝑑2𝐹𝐹3
𝑑𝑑𝑧𝑧2

𝜓𝜓𝑧𝑧

𝛾𝛾𝑥𝑥𝑥𝑥 = 𝑑𝑑𝐹𝐹2
𝑑𝑑𝑑𝑑
𝜙𝜙𝑥𝑥 + 𝑑𝑑𝐹𝐹3

𝑑𝑑𝑑𝑑
𝜓𝜓𝑥𝑥 + 𝑑𝑑𝐹𝐹2

𝑑𝑑𝑑𝑑
𝜕𝜕𝜙𝜙𝑧𝑧
𝜕𝜕𝜕𝜕

+ 𝑑𝑑𝐹𝐹3
𝑑𝑑𝑑𝑑

𝜕𝜕𝜓𝜓𝑧𝑧
𝜕𝜕𝜕𝜕

       (6) 

 
where 

𝑑𝑑𝐹𝐹2
𝑑𝑑𝑑𝑑

= �1 − 4𝑧𝑧2

ℎ2
� , 𝑑𝑑𝐹𝐹3

𝑑𝑑𝑑𝑑
= �1 − 16𝑧𝑧4

ℎ4
�

𝑑𝑑2𝐹𝐹2
𝑑𝑑𝑧𝑧2

= �− 8𝑧𝑧
ℎ2
� , 𝑑𝑑2𝐹𝐹3

𝑑𝑑𝑧𝑧2
= �− 64𝑧𝑧3

ℎ4
�

         (7) 

 
Eq. (6) shows that the transverse shear strain is 

zero at z = ±h/2 and the present theory satisfies the 
traction-free boundary conditions at the top and 
bottom surfaces of the beam. The two-dimensional 
constitutive relation stated in Eq. (8) is used to obtain 
axial and transverse shear stresses at the nth layer (n = 
1, 2, 3) of the sandwich circular beam. 

 

 �
𝜎𝜎𝑥𝑥
𝜎𝜎𝑧𝑧
𝜏𝜏𝑥𝑥𝑥𝑥

�
𝑛𝑛

= �
𝑄𝑄11(𝑧𝑧) 𝑄𝑄13(𝑧𝑧) 0
𝑄𝑄13(𝑧𝑧) 𝑄𝑄33(𝑧𝑧) 0

0 0 𝑄𝑄55(𝑧𝑧)
�

𝑛𝑛

�
𝜀𝜀𝑥𝑥
𝜀𝜀𝑧𝑧
𝛾𝛾𝑥𝑥𝑥𝑥

�
𝑛𝑛

  (8) 

 
where 𝑄𝑄𝑖𝑖𝑖𝑖(𝑧𝑧) are the stiffness coefficients in terms of 
engineering constants and are defined in the Eq. (9). 

 
𝑄𝑄11(𝑧𝑧) = 𝑄𝑄33(𝑧𝑧) = 𝐸𝐸(𝑧𝑧)

1−𝜇𝜇2
,  𝑄𝑄13(𝑧𝑧) = 𝜇𝜇𝜇𝜇(𝑧𝑧)

1−𝜇𝜇2
, 

𝑄𝑄55(𝑧𝑧) = 𝐸𝐸(𝑧𝑧)
2(1+𝜇𝜇)

    (9) 

 
Hamilton’s principle stated in Eq. (10) is used to 

derive equations of motion associated with the 
present theory. 

 

� ∫ (𝜎𝜎𝑥𝑥𝛿𝛿𝜀𝜀𝑥𝑥 + 𝜎𝜎𝑧𝑧𝛿𝛿𝜀𝜀𝑧𝑧 + 𝜏𝜏𝑥𝑥𝑥𝑥𝛿𝛿𝛾𝛾𝑥𝑥𝑥𝑥) ℎ 2⁄
−ℎ/2

𝐿𝐿

0
𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

+� � 𝜌𝜌(𝑧𝑧) �𝜕𝜕
2𝑢𝑢
𝜕𝜕𝑡𝑡2

𝛿𝛿𝛿𝛿 + 𝜕𝜕2𝑤𝑤
𝜕𝜕𝑡𝑡2

𝛿𝛿𝛿𝛿�
ℎ 2⁄

−ℎ/2

𝐿𝐿

0

 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

−∫ 𝑞𝑞 𝛿𝛿𝛿𝛿 𝑑𝑑𝑑𝑑 = 0𝐿𝐿
0

     (10) 

where 𝛿𝛿 denotes the variational operator. Equations 
of motion are derived after integrating Eq. (10) by 
parts, collecting the coefficients of unknown 
variables, and setting them equal to zero (𝛿𝛿𝑢𝑢0 =
0, 𝛿𝛿𝑤𝑤0 = 0, 𝛿𝛿𝜙𝜙𝑥𝑥 = 0, 𝛿𝛿𝜓𝜓𝑥𝑥 = 0,𝛿𝛿𝜙𝜙𝑧𝑧 = 0, 𝛿𝛿𝜓𝜓𝑧𝑧 =
0). Eqs. (11) through (16) are the equations of motion 
associated with the present theory. 

 

𝛿𝛿𝑢𝑢0:
𝜕𝜕𝑁𝑁𝑥𝑥
𝜕𝜕𝜕𝜕

+ �𝐼𝐼1 + 2 𝐼𝐼2
𝑅𝑅

+ 𝐼𝐼3
𝑅𝑅2
� 𝜕𝜕

2𝑢𝑢0
𝜕𝜕𝑡𝑡2

− �𝐼𝐼2 + 𝐼𝐼3
𝑅𝑅
� 𝜕𝜕3𝑤𝑤0
𝜕𝜕𝑡𝑡2𝜕𝜕𝜕𝜕

+ �𝐼𝐼4 + 𝐼𝐼5
𝑅𝑅
� 𝜕𝜕

2𝜙𝜙𝑥𝑥
𝜕𝜕𝑡𝑡2

+ �𝐼𝐼6 + 𝐼𝐼7
𝑅𝑅
� 𝜕𝜕

2𝜓𝜓𝑥𝑥
𝜕𝜕𝑡𝑡2

= 0

     (11) 

𝛿𝛿𝑤𝑤0:
𝜕𝜕2𝑀𝑀𝑥𝑥

𝑏𝑏

𝜕𝜕𝑥𝑥2
− 𝑁𝑁𝑥𝑥

𝑅𝑅
+ 𝑞𝑞 − �𝐼𝐼2 + 𝐼𝐼3

𝑅𝑅
� 𝜕𝜕3𝑢𝑢0
𝜕𝜕𝑡𝑡2𝜕𝜕𝜕𝜕

− 𝐼𝐼3
𝜕𝜕4𝑤𝑤0
𝜕𝜕𝑡𝑡2𝜕𝜕𝑥𝑥2

+𝐼𝐼5
𝜕𝜕3𝜙𝜙𝑥𝑥
𝜕𝜕𝑡𝑡2𝜕𝜕𝜕𝜕

+ 𝐼𝐼7
𝜕𝜕3𝜓𝜓𝑥𝑥
𝜕𝜕𝑡𝑡2𝜕𝜕𝜕𝜕

+ 𝐼𝐼1
𝜕𝜕2𝑤𝑤0
𝜕𝜕𝑡𝑡2

  + 𝐼𝐼11
𝜕𝜕2𝜙𝜙𝑧𝑧
𝜕𝜕𝑡𝑡2

+𝐼𝐼12
𝜕𝜕2𝜓𝜓𝑧𝑧
𝜕𝜕𝑡𝑡2

= 0

     (12) 

  

𝛿𝛿𝜙𝜙𝑥𝑥: 
𝜕𝜕𝑀𝑀𝑥𝑥

𝑠𝑠1

𝜕𝜕𝜕𝜕
− 𝑄𝑄𝑥𝑥𝑥𝑥1 + �𝐼𝐼4 + 𝐼𝐼5

𝑅𝑅
� 𝜕𝜕

2𝑢𝑢0
𝜕𝜕𝑡𝑡2

− 𝐼𝐼5
𝜕𝜕3𝑤𝑤0
𝜕𝜕𝑡𝑡2𝜕𝜕𝜕𝜕

+𝐼𝐼8
𝜕𝜕2𝜙𝜙𝑥𝑥
𝜕𝜕𝑡𝑡2

+ 𝐼𝐼9
𝜕𝜕2𝜓𝜓𝑥𝑥
𝜕𝜕𝑡𝑡2

= 0

      (13) 

 
𝛿𝛿𝜓𝜓𝑥𝑥:    

𝜕𝜕𝑀𝑀𝑥𝑥
𝑠𝑠2

𝜕𝜕𝜕𝜕
− 𝑄𝑄𝑥𝑥𝑥𝑥2 + �𝐼𝐼6 + 𝐼𝐼7

𝑅𝑅
� 𝜕𝜕

2𝑢𝑢0
𝜕𝜕𝑡𝑡2

− 𝐼𝐼7
𝜕𝜕3𝑤𝑤0
𝜕𝜕𝑡𝑡2𝜕𝜕𝜕𝜕

+𝐼𝐼9
𝜕𝜕2𝜙𝜙𝑥𝑥
𝜕𝜕𝑡𝑡2

+ 𝐼𝐼10
𝜕𝜕2𝜓𝜓𝑥𝑥
𝜕𝜕𝑡𝑡2

= 0

     (14) 

 
𝛿𝛿𝜙𝜙𝑧𝑧:      

𝜕𝜕𝑄𝑄𝑥𝑥𝑥𝑥1

𝜕𝜕𝜕𝜕
− 𝑉𝑉𝑥𝑥1

𝑅𝑅
− 𝑄𝑄𝑧𝑧1 + 𝑞𝑞𝑓𝑓1′(𝑧𝑧) + 𝐼𝐼11

𝜕𝜕2𝑤𝑤0
𝜕𝜕𝑡𝑡2

+𝐼𝐼13
𝜕𝜕2𝜙𝜙𝑧𝑧
𝜕𝜕𝑡𝑡2

+ 𝐼𝐼14
𝜕𝜕2𝜓𝜓𝑧𝑧
𝜕𝜕𝑡𝑡2

= 0

      (15) 

 
𝛿𝛿𝜓𝜓𝑧𝑧:    

𝜕𝜕𝑄𝑄𝑥𝑥𝑥𝑥2

𝜕𝜕𝜕𝜕
− 𝑉𝑉𝑥𝑥2

𝑅𝑅
− 𝑄𝑄𝑧𝑧2 + 𝑞𝑞𝑓𝑓2′(𝑧𝑧) + 𝐼𝐼12

𝜕𝜕2𝑤𝑤0
𝜕𝜕𝑡𝑡2

+𝐼𝐼14
𝜕𝜕2𝜙𝜙𝑧𝑧
𝜕𝜕𝑡𝑡2

+ 𝐼𝐼15
𝜕𝜕2𝜓𝜓𝑧𝑧
𝜕𝜕𝑡𝑡2

= 0

      (16) 

 
The boundary conditions at supports x = 0 and x = 

L are of the following form. 
Either 𝑁𝑁𝑥𝑥 = 0 or 𝑢𝑢0 = 0; 𝑀𝑀𝑥𝑥

𝑏𝑏 = 0 or 𝜕𝜕𝑤𝑤0
𝜕𝜕𝜕𝜕

= 0; 
𝜕𝜕𝑀𝑀𝑥𝑥

𝑏𝑏

𝜕𝜕𝜕𝜕
= 0 or 𝑤𝑤0 = 0; 𝑀𝑀𝑥𝑥

𝑠𝑠1 = 0 or 𝜙𝜙𝑥𝑥 = 0; 𝑀𝑀𝑥𝑥
𝑠𝑠2 = 0 or 

𝜓𝜓𝑥𝑥 = 0; 𝑄𝑄𝑥𝑥𝑥𝑥1 = 0or 𝜙𝜙𝑧𝑧 = 0 and 𝑄𝑄𝑥𝑥𝑥𝑥2 = 0or 𝜓𝜓𝑧𝑧 = 0 
 

where axial force, bending moments, and shear force 
resultants of the circular beam are defined as Eq. (17). 
 
(𝑁𝑁𝑥𝑥, 𝑀𝑀𝑥𝑥

𝑏𝑏, 𝑀𝑀𝑥𝑥
𝑠𝑠1, 𝑀𝑀𝑥𝑥

𝑠𝑠2) = ∫ 𝜎𝜎𝑥𝑥  (1, 𝑧𝑧, 𝐹𝐹2, 𝐹𝐹3)𝑑𝑑𝑑𝑑ℎ 2⁄
−ℎ/2 ,

(𝑉𝑉𝑥𝑥1, 𝑉𝑉𝑥𝑥2) = � 𝜎𝜎𝑥𝑥   �𝑑𝑑𝐹𝐹2
𝑑𝑑𝑑𝑑

,  𝑑𝑑𝐹𝐹3
𝑑𝑑𝑑𝑑
�

ℎ 2⁄

−ℎ/2
  𝑑𝑑𝑑𝑑,

(𝑄𝑄𝑧𝑧1, 𝑄𝑄𝑧𝑧2) = � 𝜎𝜎𝑧𝑧  �𝑑𝑑
2𝐹𝐹2
𝑑𝑑𝑧𝑧2

,  𝑑𝑑
2𝐹𝐹3
𝑑𝑑𝑧𝑧2

�
ℎ 2⁄

−ℎ/2
  𝑑𝑑𝑧𝑧,

(𝑄𝑄𝑥𝑥𝑥𝑥1 , 𝑄𝑄𝑥𝑥𝑥𝑥2 ) = � 𝜏𝜏𝑥𝑥𝑥𝑥  �𝑑𝑑𝐹𝐹2
𝑑𝑑𝑑𝑑

,  𝑑𝑑𝐹𝐹3
𝑑𝑑𝑑𝑑
�

ℎ 2⁄

−ℎ/2
  𝑑𝑑𝑑𝑑

 (17) 

 
Inertia constants appearing in the set of equations 

of motion are defined in Eq. (18). 
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(𝐼𝐼1, 𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4, 𝐼𝐼5, 𝐼𝐼6, 𝐼𝐼7) =

 ∫ 𝜌𝜌(𝑧𝑧)[1, 𝑧𝑧, 𝑧𝑧2,𝐹𝐹2,𝐹𝐹2 𝑧𝑧,𝐹𝐹3,𝐹𝐹3 𝑧𝑧]𝑑𝑑𝑑𝑑ℎ 2⁄
−ℎ/2

(𝐼𝐼8, 𝐼𝐼9, 𝐼𝐼10, 𝐼𝐼11, 𝐼𝐼12) =

 � 𝜌𝜌(𝑧𝑧) �𝐹𝐹22,𝐹𝐹2𝐹𝐹3,𝐹𝐹32, 𝑑𝑑𝐹𝐹2
𝑑𝑑𝑑𝑑

, 𝑑𝑑𝐹𝐹3
𝑑𝑑𝑑𝑑
�𝑑𝑑𝑑𝑑

ℎ 2⁄

−ℎ/2

(𝐼𝐼13, 𝐼𝐼14, 𝐼𝐼15) =

 � 𝜌𝜌(𝑧𝑧) ��𝑑𝑑𝐹𝐹2
𝑑𝑑𝑑𝑑
�
2

, �𝑑𝑑𝐹𝐹2
𝑑𝑑𝑑𝑑

𝑑𝑑𝐹𝐹3
𝑑𝑑𝑑𝑑
� , �𝑑𝑑𝐹𝐹3

𝑑𝑑𝑑𝑑
�
2
� 𝑑𝑑𝑑𝑑

ℎ 2⁄

−ℎ/2

     (18) 

 
 
3 AN EXACT ANALYTICAL SOLUTION  

 
In this section, the Navier solution technique is 

used to obtain an exact analytical solution for the free 
vibration analysis of simply supported anti-
symmetric FGM sandwich circular beams. Eq. (19) 
defines the boundary conditions at the simply-
supported edges. 

 
𝑁𝑁𝑥𝑥 = 0, 𝑤𝑤0 = 0, 
𝑀𝑀𝑥𝑥
𝑏𝑏 = 0, 𝑀𝑀𝑥𝑥

𝑠𝑠1 = 0,
𝑀𝑀𝑥𝑥
𝑠𝑠2 = 0,

 𝜙𝜙𝑧𝑧 = 0, 𝜓𝜓𝑧𝑧 = 0

               (19) 

 
Unknown variables involved in the equations of 

motion are assumed in the following form stated in 
Eq. (20) to satisfy the simply-supported boundary 
conditions stated in Eq. (19) exactly. 

 

�
𝑢𝑢0
𝜙𝜙𝑥𝑥
𝜓𝜓𝑥𝑥
� = � �

𝑢𝑢𝑚𝑚
𝜙𝜙𝑥𝑥𝑥𝑥
𝜓𝜓𝑥𝑥𝑥𝑥

� cos(𝛼𝛼𝛼𝛼)
∞

𝑚𝑚=1

𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔)

�
𝑤𝑤0
𝜙𝜙𝑧𝑧
𝜓𝜓𝑧𝑧
� = � �

𝑤𝑤𝑚𝑚
𝜙𝜙𝑧𝑧𝑧𝑧
𝜓𝜓𝑧𝑧𝑧𝑧

� 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼𝛼𝛼)
∞

𝑚𝑚=1

𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔)

      (20) 

 
where 
 𝛼𝛼 = 𝑚𝑚𝑚𝑚/𝐿𝐿,  𝜔𝜔 is the natural frequency, 
𝑢𝑢𝑚𝑚, 𝑤𝑤𝑚𝑚, 𝜙𝜙𝑥𝑥𝑥𝑥, 𝜓𝜓𝑥𝑥𝑥𝑥, 𝜙𝜙𝑧𝑧𝑧𝑧 and 𝜓𝜓𝑧𝑧𝑚𝑚 are the 
amplitudes.  

Substitution of Eq. (20) into equations of motion 
(11) through (16) leads to the Eigenvalue problem 
stated in Eq. (21). 

 
{[𝐾𝐾]6×6 − 𝜔𝜔2[𝑀𝑀]6×6} × {𝛥𝛥} = 0             (21) 

 
 
where elements of stiffness matrix [K] are defined in 
the Eqs. (22) through (26).  
 

𝐾𝐾11 = 𝐴𝐴11𝛼𝛼2,𝐾𝐾12 = �−𝐴𝐴11
𝑅𝑅
𝛼𝛼 − 𝐵𝐵11𝛼𝛼3� ,

𝐾𝐾13 = 𝐶𝐶11𝛼𝛼2,
𝐾𝐾14 = (𝐷𝐷11𝛼𝛼2),𝐾𝐾15 = �−𝐸𝐸11

𝑅𝑅
𝛼𝛼 − 𝐺𝐺13𝛼𝛼� ,

𝐾𝐾16 = −𝐹𝐹11
𝑅𝑅
𝛼𝛼 − 𝐻𝐻13𝛼𝛼,

𝐾𝐾22 = �𝐴𝐴11
𝑅𝑅2

+ 𝐼𝐼11𝛼𝛼4 + 2 𝐵𝐵11
𝑅𝑅
𝛼𝛼2� ,

𝐾𝐾23 = �− 𝐶𝐶11
𝑅𝑅
𝛼𝛼 − 𝐽𝐽11𝛼𝛼3� ,

𝐾𝐾24 = �−𝐷𝐷11
𝑅𝑅
𝛼𝛼 − 𝐾𝐾11𝛼𝛼3� ,

𝐾𝐾25 = �𝐸𝐸11
𝑅𝑅2

+ 𝐺𝐺13
𝑅𝑅

+ 𝐿𝐿11
𝑅𝑅
𝛼𝛼2 + 𝑁𝑁13𝛼𝛼2� ,

𝐾𝐾26 = �𝐹𝐹11
𝑅𝑅2

+ 𝐻𝐻13
𝑅𝑅

+ 𝑀𝑀11
𝑅𝑅
𝛼𝛼2 + 𝑂𝑂13𝛼𝛼2� ,

𝐾𝐾33 = (𝑃𝑃11𝛼𝛼2 + 𝐵𝐵𝐾𝐾55),
𝐾𝐾34 = (𝑄𝑄𝑄𝑄11𝛼𝛼2 + 𝐵𝐵𝐿𝐿55),

𝐾𝐾35 = �−𝑅𝑅11
𝑅𝑅
𝛼𝛼 − 𝑇𝑇13𝛼𝛼 + 𝐵𝐵𝐾𝐾55𝛼𝛼� ,

𝐾𝐾36 = �− 𝑆𝑆11
𝑅𝑅
𝛼𝛼 − 𝑈𝑈13𝛼𝛼 + 𝐵𝐵𝐿𝐿55𝛼𝛼� ,

𝐾𝐾44 = (𝑉𝑉11𝛼𝛼2 + 𝐵𝐵𝑀𝑀55),
𝐾𝐾45 = �−𝑊𝑊11

𝑅𝑅
𝛼𝛼 − 𝑌𝑌13𝛼𝛼 + 𝐵𝐵𝐿𝐿55𝛼𝛼� ,

𝐾𝐾46 = �− 𝑋𝑋11
𝑅𝑅
𝛼𝛼 − 𝑍𝑍13𝛼𝛼 + 𝐵𝐵𝑀𝑀55𝛼𝛼� ,

𝐾𝐾55 = �𝐵𝐵𝐴𝐴11
𝑅𝑅

+ 2 𝐵𝐵𝐶𝐶13
𝑅𝑅

+ 𝐵𝐵𝐻𝐻33 + 𝐵𝐵𝐾𝐾55𝛼𝛼2� ,

𝐾𝐾56 = �𝐵𝐵𝐵𝐵11
𝑅𝑅

+ 𝐵𝐵𝐷𝐷13
𝑅𝑅

+ 𝐵𝐵𝐹𝐹13
𝑅𝑅

+ 𝐵𝐵𝐼𝐼33 + 𝐵𝐵𝐿𝐿55𝛼𝛼2� ,

𝐾𝐾66 = �𝐵𝐵𝐸𝐸11
𝑅𝑅

+ 2 𝐵𝐵𝐺𝐺13
𝑅𝑅

+ 𝐵𝐵𝐽𝐽33 + 𝐵𝐵𝑀𝑀55𝛼𝛼2� .

  (22)  

 
where 

  

(𝐴𝐴11,𝐵𝐵11,𝐶𝐶11,𝐷𝐷11,𝐸𝐸11,𝐹𝐹11) =

� 𝑄𝑄11(𝑧𝑧) �1, 𝑧𝑧,𝐹𝐹2,𝐹𝐹3, 𝑑𝑑𝐹𝐹2
𝑑𝑑𝑑𝑑

, 𝑑𝑑𝐹𝐹3
𝑑𝑑𝑑𝑑
�

ℎ 2⁄

−ℎ/2
  𝑑𝑑𝑑𝑑,

(𝐼𝐼𝐼𝐼11, 𝐽𝐽11,𝐾𝐾11, 𝐿𝐿11,𝑀𝑀11) =

� 𝑄𝑄11(𝑧𝑧) 𝑧𝑧 �𝑧𝑧,𝐹𝐹2,𝐹𝐹3, 𝑑𝑑𝐹𝐹2
𝑑𝑑𝑑𝑑

, 𝑑𝑑𝐹𝐹3
𝑑𝑑𝑑𝑑
�  𝑑𝑑𝑑𝑑,

ℎ 2⁄

−ℎ/2

(𝐺𝐺13,𝐻𝐻13) = � �𝑑𝑑
2𝐹𝐹2
𝑑𝑑𝑧𝑧2

, 𝑑𝑑
2𝐹𝐹3
𝑑𝑑𝑧𝑧2

�   𝑑𝑑𝑑𝑑
ℎ 2⁄

−ℎ/2
, 

         (23) 

 

 

(𝑁𝑁13,𝑂𝑂13) = � 𝑄𝑄13(𝑧𝑧)𝑧𝑧 �𝑑𝑑
2𝐹𝐹2
𝑑𝑑𝑧𝑧2

, 𝑑𝑑
2𝐹𝐹3
𝑑𝑑𝑧𝑧2

�
ℎ 2⁄

−ℎ/2
 𝑑𝑑𝑑𝑑,

(𝑃𝑃11,𝑄𝑄𝑄𝑄11,𝑅𝑅11, 𝑆𝑆11) =

� 𝑄𝑄11(𝑧𝑧)𝐹𝐹2 �𝐹𝐹2,𝐹𝐹3, 𝑑𝑑𝐹𝐹2
𝑑𝑑𝑑𝑑

, 𝑑𝑑𝐹𝐹3
𝑑𝑑𝑑𝑑
�

ℎ 2⁄

−ℎ/2
 𝑑𝑑𝑑𝑑,

(𝑇𝑇13,𝑈𝑈13) = � 𝑄𝑄13(𝑧𝑧)𝐹𝐹2 �
𝑑𝑑2𝐹𝐹2
𝑑𝑑𝑧𝑧2

, 𝑑𝑑
2𝐹𝐹3
𝑑𝑑𝑧𝑧2

�
ℎ 2⁄

−ℎ/2
 𝑑𝑑𝑑𝑑, 

(𝑉𝑉11,𝑊𝑊11,𝑋𝑋11) = � 𝑄𝑄11(𝑧𝑧)𝐹𝐹3 �𝐹𝐹3, 𝑑𝑑𝐹𝐹2
𝑑𝑑𝑑𝑑

, 𝑑𝑑𝐹𝐹3
𝑑𝑑𝑑𝑑
�  𝑑𝑑𝑑𝑑

ℎ 2⁄

−ℎ/2
,

   (24) 
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(𝐵𝐵𝐴𝐴11,𝐵𝐵𝐵𝐵11) = � 𝑄𝑄11(𝑧𝑧)𝑑𝑑𝐹𝐹2
𝑑𝑑𝑑𝑑
�𝑑𝑑𝐹𝐹2
𝑑𝑑𝑑𝑑

, 𝑑𝑑𝐹𝐹3
𝑑𝑑𝑑𝑑
�

ℎ 2⁄

−ℎ/2
 𝑑𝑑𝑑𝑑,

(𝑌𝑌13,𝑍𝑍13) = � 𝑄𝑄13(𝑧𝑧)𝐹𝐹2 �
𝑑𝑑2𝐹𝐹2
𝑑𝑑𝑧𝑧2

, 𝑑𝑑
2𝐹𝐹3
𝑑𝑑𝑧𝑧2

�
ℎ 2⁄

−ℎ/2
 𝑑𝑑𝑑𝑑,

 (𝐵𝐵𝐶𝐶13,𝐵𝐵𝐷𝐷13) = � 𝑄𝑄13(𝑧𝑧)𝑑𝑑𝐹𝐹2
𝑑𝑑𝑑𝑑
�𝑑𝑑

2𝐹𝐹2
𝑑𝑑𝑧𝑧2

, 𝑑𝑑
2𝐹𝐹3
𝑑𝑑𝑧𝑧2

�
ℎ 2⁄

−ℎ/2
 𝑑𝑑𝑑𝑑,

(𝐵𝐵𝐹𝐹13,𝐵𝐵𝐺𝐺13) = � 𝑄𝑄13(𝑧𝑧)𝑑𝑑𝐹𝐹3
𝑑𝑑𝑑𝑑
�𝑑𝑑

2𝐹𝐹2
𝑑𝑑𝑧𝑧2

, 𝑑𝑑
2𝐹𝐹3
𝑑𝑑𝑧𝑧2

�
ℎ 2⁄

−ℎ/2
 𝑑𝑑𝑑𝑑,

 (25) 

 

(𝐵𝐵𝐻𝐻33,𝐵𝐵𝐼𝐼33) = � 𝑄𝑄33(𝑧𝑧)𝑑𝑑
2𝐹𝐹2
𝑑𝑑𝑧𝑧2

�𝑑𝑑
2𝐹𝐹2
𝑑𝑑𝑧𝑧2

, 𝑑𝑑
2𝐹𝐹3
𝑑𝑑𝑧𝑧2

�
ℎ 2⁄

−ℎ/2
𝑑𝑑𝑑𝑑,

(𝐵𝐵𝐾𝐾55,𝐵𝐵𝐿𝐿55) = � 𝑄𝑄55(𝑧𝑧)𝑑𝑑𝐹𝐹2
𝑑𝑑𝑑𝑑

[𝑓𝑓1′(𝑧𝑧),𝑓𝑓2′(𝑧𝑧)]
ℎ 2⁄

−ℎ/2
𝑑𝑑𝑑𝑑,

𝐵𝐵𝐽𝐽33 = � 𝑄𝑄33(𝑧𝑧) �𝑑𝑑
2𝐹𝐹3
𝑑𝑑𝑧𝑧2

𝑑𝑑2𝐹𝐹3
𝑑𝑑𝑧𝑧2

�
ℎ 2⁄

−ℎ/2
 𝑑𝑑𝑑𝑑,

𝐵𝐵𝐸𝐸11 = � 𝑄𝑄11(𝑧𝑧) �𝑑𝑑𝐹𝐹2
𝑑𝑑𝑑𝑑

𝑑𝑑𝐹𝐹2
𝑑𝑑𝑑𝑑
�

ℎ 2⁄

−ℎ/2
 𝑑𝑑𝑑𝑑,

𝐵𝐵𝑀𝑀55 = � 𝑄𝑄55(𝑧𝑧) �𝑑𝑑𝐹𝐹3
𝑑𝑑𝑑𝑑

𝑑𝑑𝐹𝐹3
𝑑𝑑𝑑𝑑
�

ℎ 2⁄

−ℎ/2
 𝑑𝑑𝑑𝑑

(26) 

 
Elements of mass matrix [M] are defined in            

Eq. (27). 
 
𝑀𝑀11 = �𝐼𝐼1 + 2 𝐼𝐼2

𝑅𝑅
+ 𝐼𝐼3

𝑅𝑅2
� ,𝑀𝑀12 = −�𝐼𝐼2 + 𝐼𝐼3

𝑅𝑅
�𝛼𝛼,

𝑀𝑀13 = �𝐼𝐼4 + 𝐼𝐼5
𝑅𝑅
�   ,𝑀𝑀14 = �𝐼𝐼6 + 𝐼𝐼7

𝑅𝑅
� ,𝑀𝑀15 = 0,

𝑀𝑀16 = 0, 𝑀𝑀22 = (𝐼𝐼3𝛼𝛼2 + 𝐼𝐼1), 𝑀𝑀23 = −𝐼𝐼5,
𝑀𝑀24 = −𝐼𝐼7𝛼𝛼, 𝑀𝑀25 = 𝐼𝐼11, 𝑀𝑀26 = 𝐼𝐼12,

𝑀𝑀33 = 𝐼𝐼8,𝑀𝑀34 = 𝐼𝐼9, 𝑀𝑀35 = 0, 𝑀𝑀36 = 0,
𝑀𝑀44 = 𝐼𝐼10,𝑀𝑀45 = 0, 𝑀𝑀46 = 0,
𝑀𝑀55 = 𝐼𝐼13,𝑀𝑀65 = 𝐼𝐼14, 𝑀𝑀66 = 𝐼𝐼15

 (27) 

 
Eq. (28) shows a vector of unknowns. 

 
{𝛥𝛥} = {𝑢𝑢𝑚𝑚 𝑤𝑤𝑚𝑚 𝜙𝜙𝑥𝑥𝑥𝑥 𝜓𝜓𝑥𝑥𝑥𝑥 𝜙𝜙𝑧𝑧𝑧𝑧 𝜓𝜓𝑧𝑧𝑧𝑧}𝑇𝑇  (28) 
 

Mass and stiffness matrices are symmetric 
matrices. Natural frequencies are obtained from         
the non-trivial solution of Eq. (21) i.e.                          
  |[𝐾𝐾] −𝜔𝜔2[𝑀𝑀]| = 0.  

The natural frequency (𝜔𝜔) becomes the 
fundamental frequency at m=1. 
 
4 NUMERICAL RESULTS AND 
DISCUSSION 

 
Exact analytical solutions to free vibration 

problems for simply supported FGM sandwich 
circular beams are obtained using Navier’s technique. 
To the best of the author’s knowledge, literature on 
free vibration analysis of anti-symmetric sandwich 

circular beams is not available; therefore, the validity 
of the present theory is proved by applying it to the 
frequency analysis of anti-symmetric straight FGM 
sandwich beams (R = ∞).  The beam is made up of 
ceramic (Alumina) and metal (Aluminum).  

The material properties of these constituents are   
Ec = 380 GPa, ρc =3960 kg/m3, Em = 70 GPa,                
ρm =2702 kg/m3. As compared to the modulus of 
elasticity, the effects of Poisson’s ratio are negligible 
on the fundamental frequencies of FGM circular 
beams. Therefore, Poisson’s ratio of both ceramic and 
metal is assumed to be the same (µ= 0.3). These 
material properties of circular beams are varied 
through the thickness according to the power law. In 
the case of sigmoid (S-P-FGM) circular beams, the 
top surface of the beam is metal-rich whereas the 
bottom surface is ceramic-rich. However, in the case 
of three-layered FGM sandwich circular beams, both 
the top and the bottom surfaces of the beam are metal-
rich. The stiffness of the beam becomes lesser as the 
power-law index increases.  

To present the numerical values of the 
fundamental frequencies, the non-dimensional form 
given in Eq. (29) is used. 

 

𝜔𝜔� = 𝜔𝜔𝐿𝐿2

ℎ �
𝜌𝜌𝑚𝑚
𝐸𝐸𝑚𝑚

                            (29) 

 
The following numerical problems are solved in 

this study to present the fundamental frequencies of 
FGM circular beams.  

 
1. Free vibration analysis of three-layered anti-

symmetric straight FGM sandwich beams. 
2. Free vibration analysis of three-layered anti-

symmetric FGM sandwich circular beams. 
3. Free vibration analysis of two-layered anti-

symmetric sigmoid (S-P-FGM) circular beams.  
 
Problem 1: In this problem, the present theory is 
applied for the free vibration analysis of anti-
symmetric straight FGM sandwich beams. 
Fundamental frequencies of two types of anti-
symmetric FGM sandwich (2-1-1, 2-2-1) straight 
beams are obtained. The numerical results for straight 
beams are recovered by setting R = ∞ in the 
mathematical formulation of the circular beam. The 
non-dimensional fundamental frequencies are 
obtained for different power-law index (p) and L/h 
ratios. The present results are compared with those 
presented by other researchers [35-38].  

Table 1 reveals that the present theory predicts the 
non-dimensional fundamental frequencies in close 
agreement with other theories. An increase in the 
power-law index decreases the non-dimensional 
fundamental frequencies whereas the increase in the 
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L/h ratio also increases the non-dimensional 
fundamental frequencies. An increase in the                
power-law index reduces the stiffness of the circular 
beam.  

Table 2 also shows that the fundamental frequency 
is higher for the 2-2-1 lamination scheme as 
compared to the 2-1-1 scheme due to the higher 
thickness of the isotropic core.  
 
Problem 2: In this problem, the present theory is 
extended for the free vibration analysis of anti-
symmetric FGM sandwich circular beams. Layerwise 
thickness coordinates for FGM sandwich circular 
beams are as follows. 

 
2-1-1: The thickness of layer 1 is double of 

thicknesses of layer 2 and layer 3 (h/2: h/4: h/4) 
 

2-2-1: The thickness of layer 3 is half of the 
thicknesses of layer 1 and layer 2 (2h/5: 2h/5: h/5) 

 
The fundamental frequencies are obtained for 

different values of the power-law index and the radius 
of curvature.  

Table 2 summarizes the numerical values of 
fundamental frequencies for anti-symmetric FGM 
sandwich circular beams. These are the benchmark 
results presented by the authors for the first time. The 
lower value of the radius of curvature shows circular 
beam has deep curvature whereas the higher value of 
it represents the circular beam has shallow curvature. 
The non-dimensional fundamental frequency 
increases with respect to the increase in the radius of 
curvature whereas decreases with respect to the 
increase in the power-law index value. Figs. 4 and 5 
show the variations of fundamental frequencies with 
respect to the radius of curvature for anti-symmetric 
FGM sandwich (2-1-1 and 2-2-1) circular beams 
respectively. 
 
Problem 3: In this problem, fundamental frequencies 
of two-layered anti-symmetric sigmoid (S-P-FGM) 
circular beams are presented for the first time. 
Layerwise thickness coordinates for S-P-FGM 
sandwich circular beams are as follows. 

 
1-0-1:  Thicknesses of layers 1 and 3 are the same, 

and the thickness of layer 2 is zero (h/2: 0: h/2). 
 

The top of the circular beam is metal-rich whereas 
the bottom of the circular beam is ceramic-rich. The 
material properties of the sigmoid circular beam are 
varying anti-symmetrically through the thickness. 
The numerical values of fundamental frequencies for 
this circular beam are shown in Table 3.  

Examination of Table 3 shows that the values of 
fundamental frequencies increase with respect to an 
increase in the value of the radius of curvature. This 
shows that the shallow circular beam predicts higher 
values of fundamental frequencies and the deep 
circular beam predicts lower values of fundamental 
frequencies. Fig. 6 shows variations of fundamental 
frequencies with respect to the radius of curvature for 
sigmoid (S-P-FGM) FGM circular beams. 

 

 
Figure 4. Variations of the fundamental frequency with 
respect to the power-law indices of functionally graded 

sandwich (2-1-1) circular beams (L/h = 5) 
 

 
Figure 5. Variations of the fundamental frequency with 
respect to the power-law indices of functionally graded 

sandwich (2-2-1) circular beams (L/h = 5) 
 

 
Figure 6. Variations of the fundamental frequency with 
respect to the power-law indices of sigmoid (S-P-FGM) 

circular beams (L/h = 5) 
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Table 1 Non-dimensional fundamental frequencies of anti-symmetric straight FGM sandwich beams (Type A, R = ∞) 
p Theory L/h=5   L/h=20  

2-1-1 2-2-1  2-1-1 2-2-1 
0 Present  5.1603 5.1603  5.4609 5.4609 

Nguyen et al. [38] 5.1620 5.1620  5.4611 5.4611 
Nguyen et al. [37] 5.1528 5.1528  5.4603 5.4603 
Vo. et al. [36] 5.1618 5.1618  5.4610 5.4610 
Vo et al. [35] 5.1528 5.1528  5.4603 5.4603 

1 Present  3.8247 3.9951  3.9737 4.1570 
Nguyen et al. [38] 3.8318 4.0018  3.9824 4.1643 
Nguyen et al. [37] 3.8206 3.9911  3.9775 4.1603 
Vo. et al. [36] 3.8301 4.0005  3.9822 4.1641 
Vo et al. [35] 3.8187 3.9896  3.9774 4.1602 

2 Present  3.3551 3.5743  3.4678 3.6989 
Nguyen et al. [38] 3.3685 3.5848  3.4842 3.7051 
Nguyen et al. [37] 3.3546 3.5719  3.4756 3.7049 
Vo. et al. [36] 3.3656 3.5825  3.4838 3.7118 
Vo et al. [35] 3.3514 3.5692  3.4754 3.7049 

5 Present  2.9743 3.1949  3.0655 3.2927 
Nguyen et al. [38] 2.9955 3.2122  3.0899 3.3030 
Nguyen et al. [37] 2.9790 3.1966  3.0776 3.3028 
Vo. et al. [36] 2.9912 3.2087  3.0891 3.3133 
Vo et al. [35] 2.9746 3.1928  3.0773 3.3028 

10 Present  2.8650 3.0589  2.9535 3.1495 
Nguyen et al. [38] 2.8886 3.0797  2.9797 3.1739 
Nguyen et al. [37] 2.8716 3.0630  2.9665 3.1616 
Vo. et al. [36] 2.8839 3.0588  2.9786 3.1732 
Vo et al. [35] 2.8669 3.0757  2.9662 3.1613 

 
Table 2 Non-dimensional fundamental frequencies of anti-symmetric FGM sandwich circular beams (Type A) 

 L/h R/h p 
 0 1 2 5 10 
2-1-1 5 1 4.9307 3.6357 3.1830 2.8179 2.7140 
 2 5.1000 3.7700 3.3036 2.9265 2.8186 
 5 5.1505 3.8134 3.3437 2.9633 2.8543 
 10 5.1578 3.8208 3.3510 2.9702 2.8610 
 20 5.1597 3.8232 3.3534 2.9726 2.8633 
 50 5.1602 3.8242 3.3545 2.9737 2.8644 
 100 5.1602 3.8245 3.3548 2.9740 2.8648 
 20 1 5.2047 3.7817 3.2984 2.9146 2.8079 
 2 5.3933 3.9216 3.4213 3.0237 2.9131 
 5 5.4499 3.9645 3.4594 3.0578 2.9460 
 10 5.4582 3.9711 3.4653 3.0632 2.9512 
 20 5.4602 3.9729 3.4670 3.0647 2.9527 
 50 5.4608 3.9735 3.4676 3.0653 2.9533 
 100 5.4609 3.9736 3.4677 3.0654 2.9534 
2-2-1 5 1 4.9307 3.7691 3.3929 3.0278 2.8977 
  2 5.1000 3.9322 3.5206 3.1442 3.0096 
  5 5.1505 3.9826 3.5627 3.1833 3.0476 
  10 5.1578 3.9910 3.5702 3.1906 3.0547 
  20 5.1597 3.9936 3.5727 3.1931 3.0572 
  50 5.1602 3.9947 3.5738 3.1943 3.0583 
  100 5.1602 3.9949 3.5741 3.1946 3.0586 
 20 1 5.2047 3.9086 3.5188 3.1310 2.9944 
  2 5.3933 4.0930 3.6497 3.2481 3.1065 
  5 5.4499 4.1568 3.6901 3.2845 3.1415 
  10 5.4582 4.1540 3.6964 3.2903 3.1471 
  20 5.4602 4.1561 3.6981 3.2919 3.1487 
  50 5.4608 4.1568 3.6987 3.2925 3.1492 
  100 5.4609 4.1569 3.6989 3.2926 3.1494 
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Table 3 Non-dimensional fundamental frequencies of anti-symmetric sigmoid (S-P-FGM) circular beams (Type B) 

L/h R/h p 
0 1 2 5 10 

5 1 1.8881 1.9214 1.4909 1.2709 1.1104 
 2 2.0091 2.0441 1.5922 1.3602 1.1890 
 5 2.0690 2.1024 1.6439 1.4056 1.2301 
 10 2.0861 2.1186 1.6591 1.4189 1.2424 
 20 2.0940 2.1261 1.6662 1.4251 1.2482 
 50 2.0986 2.1303 1.6704 1.4287 1.2516 
 100 2.1001 2.1317 1.6717 1.4299 1.2527 
 ∞ 2.1016 2.1331 1.6731 1.4311 1.2538 

20 1 1.9389 1.9337 1.4994 1.2349 1.0994 
 2 2.0273 2.0214 1.5703 1.2945 1.1529 
 5 2.0608 2.0542 1.5980 1.3180 1.1742 
 10 2.0682 2.0613 1.6043 1.3234 1.1792 
 20 2.0711 2.0641 1.6069 1.3256 1.1813 
 50 2.0726 2.0655 1.6082 1.3268 1.1824 
 100 2.0731 2.0659 1.6086 1.3271 1.1827 
 ∞ 2.0735 2.0663 1.6090 1.3275 1.1830 

 
5 CONCLUSIONS 
 

A fifth-order circular beam theory is developed and 
applied for the fundamental frequency analysis of anti-
symmetric FGM sandwich circular beams. The theory 
is formulated using Hamilton’s principle and 
Eigenvalue problems are solved using the exact 
analytical solution technique suggested by Navier. 
Fundamental frequencies of two-layered anti-
symmetric S-P-FGM circular beams and three-layered 
anti-symmetric FGM sandwich circular beams are 
obtained for various values of radius of curvatures and 
the power-law index. Following are the important 
findings of the present study. 
1) The present theory is also displacement-based 

beam theory like others available in the literature 
and considers the effects of transverse shear and 
normal deformations. However, the fifth-order 
expansion of thickness coordinates is used for the 
first time in the presented theory. 

2) The present theory considers the influence of both 
transverse shear and normal strains. 

3) The frequency analysis of S-P-FGM circular 
beams is presented in this study for the first time. 
Therefore, these results can be served as a 
benchmark for future researchers to compare their 
studies. 

Based on the numerical results and the discussion, it is 
concluded that the present theory is in excellent 
agreement with other theories while predicting the 
fundamental frequencies of straight beams. For the same 
length and thickness, the value of non-dimensional 
fundamental frequency increases as the radius of 
curvature is decreased. Also, the non-dimensional 
frequency decreases as the power-law index increases. 
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