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Abstract: - Delamination is typical damage in the Fiber Metal Laminate composite structures, usually 
hidden from the outer side that can reduce the structural stiffness. The delamination is undoubtedly an 
important topic as it causes to worsen the performance of the Fiber metal laminates (FMLs)structures in 
the service. The detection and severity analysis of delamination in a field like the aviation industry is vital 
for safety and economic considerations. The existence of delamination varies the vibration characteristics, 
such as natural frequencies, mode shapes, etc., of composites. Hence, this indication can be effectively used 
to locate and quantify the delamination. The changes in vibration characteristics are inputs for the inverse 
problem to determine the location and size of delamination. This paper used a machine-learning and 
regression model to determine the locations and severity of the delamination in the Fiber Metal laminate 
cantilever beams. The dataset related to delamination location, severity, and bending natural frequencies 
was obtained using the Finite Element Analysis. From this study, it is found that, the machine learning and 
regression model results related to predictions of delamination locations and severity are close to each other 
and give good agreement with actual delamination locations and delamination areas. 
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1. INTRODUCTION 
 

The use of composite material in aerospace, naval, 
civil, and automobile industries is increasing due to 
its unique characteristics such as high strength-to-
weight ratio, high specific strength, fatigue strength, 
and higher damage tolerance capability. Drilling 
operations [1, 2] on composite laminates Fiber metal 
laminates, Carbon fiber reinforced polymers 
(CFRPs), Glass fiber reinforced polymers (GFRPs) 
are necessary for fastening with different materials to 
have valued outcomes. Always, the quality of drilling 
determines the efficiency of fastening. It is expected 
to make error-free, precise holes in order to obtain 
high joint strength while assembling materials using 
riveting. However, the characteristics of the materials 
that make up composite laminates provide challenges 
during machining. Numerous unfavourable effects, 
i.e., pulling of fibers, delaminations, produces 

because of drilling operations. And it leads to reduce 
the materials fatigue strength. Figure 1 depicts the 
delamination of composite materials brought on by 
drilling operations. There is a significant difference 
between the drilling of conventional materials and 
composite materials. Drilling composite laminates is 
known to cause serious damage to the laminates, 
known as delamination. Delamination in the 
composite materials occurs during drilling operations 
because, during that time, thrust force and torque are 
produced and act on the materials. And it is 
considered one of the major modes of failure. The 
strength and stiffness of the composites are decreased 
by delamination. The dynamic response, or natural 
frequencies, changes as a result of the composites' 
altered stiffness. FMLs were the subject of a vibration 
investigation by Merzuki et al [3] (fiber metal 
laminates). They discovered through their research 
that natural frequencies rise along with lamina 
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thickness. In fiber-metal laminates [4–9], alternative 
layers such as metal alloys and fiber-reinforced 
polymer composites are included. An aluminium 
alloy layer gives high impact strength to the 
composite materials. The relationship between 
delamination and the stacking sequence for 
composite materials is clearly explained by Long et al 
[10] Along with discussing how well delamination 
modelling works, they validated the damage model. 

 

 

Figure 1. Delamination of composite material 
 
To examine how delamination influences the 

eigen values (fundamental frequencies) and eigen 
vectors (mode shapes) of the dynamic response, Kim 
et al [11] developed a method for dynamic analysis. 
The derived model's generated natural frequencies, 
however, show strong agreement with both higher-
order theoretical predictions and experimental results. 
Huang et al [12] investigated the GLARE-related 
characteristics of delamination extension and fatigue 
crack propagation under single overloads. To assess 
the behaviour of fatigue crack propagation and 
delamination extension, the applied loading variables 
were examined. The delamination resistance of 
laminated glass was tested by Dural and Oyar 
[13] under varied boundary conditions.  

De-Vries et al [14] conducted an experimental 
programme to evaluate different splicing geometry 
and the thicknesses of the metal layer for 
delamination behaviour. Given the scatter in the 
results discussed in this article, it is imperative to 
design the yield function using an appropriate test 
approach first. The squared weighted deviation 
between the observed mode form of a composite plate 
with delamination and it is used to create a weighted 
eigen vector damage index [15]. It is investigated 
whether delamination can be detected using a 
vibration test in addition to the effects of the area of 
delamination on the plate's inherent frequencies [16]. 
The laminated (orthotropic) composite plate's 
theoretical natural frequency is determined using the 
D'Alembert concept. The intrinsic frequencies of the 
plate are significantly impacted by lamination 

delamination in composite laminates [17]. 
Delamination tests were conducted, and the results 
were compared with predictions of linear damage 
growth. The delaminated surfaces were examined by 
scanning electronic microscopy to more fully 
evaluate the delamination growth rate under different 
amplitude loadings.  

Khan et al [18] investigated how variations in 
stress influenced the pattern of delamination in fiber-
metal laminates. The creation of delamination shapes 
under varying amplitude loading is described with an 
explanation. The transient behaviour of a delaminated 
composite plate with integrated active fiber 
composite was studied by Shankar et al [19]. By 
carefully examining the digital imagecorrelation 
(DIC) results [20], it was possible to evaluate how 
various delamination behaviours during testing 
affected the compressive load capacity. The presence 
of delaminations in the composite structures 
introduces a local flexibility in the damage location, 
which changes the dynamic behavior of the 
composite, because of reduction in the stiffness. 
Thus, vibration analysis can be the best tool for 
delaminations assessment, as the reduction in the 
stiffness results in changes in the natural frequencies 
and modifications of the mode shapes, impulsive 
response, frequency response functions, etc. of the 
component [21, 22] while the existence of damage 
can be easily identified by monitoring natural 
frequency shifts, identifying the location and severity 
of this damage is not possible directly. It can be done 
by solving the inverse problem, which requires the 
use of artificial intelligence [23, 24]. Vibration-based 
composite health monitoring through monitoring 
dynamic response of composite structures is the 
research work carried out and reported here. Fiber 
metal laminate (FMLs) composite beams were 
chosen for this study. Composite structures in their 
lifetime can suffer from a number of failure 
mechanisms like delaminations, fiber breakage, 
matrix cracking, etc, due to impacts of foreign 
objects, fatigue loads, environmental conditions, etc. 
Delamination in composite structures may easily 
spread throughout the composite laminate upon 
repeated loading, causing disastrous and costly 
failures. Srikant et al [27] considered and used the 
differences in the vibrational characteristics as inputs 
to predict the delamination location and size. This 
study uses an artificial neural network with the 
natural frequency as the standard vibration parameter 
to examine the delamination of a glass fiber-
reinforced composite beam. (ANN). The results 
demonstrate that the back propagation method based 
on artificial neural networks can perfectly predict the 
quantity and position of delaminations in composites, 
given numerical natural frequency data. Zhang et al 



 

RJAV vol 20 issue 1/2023                                           50                                                         ISSN 1584-7284 

[28] expanded the graphical method to estimate the 
delamination variables in anisotropic composite 
beams. After the‘Introduction’ section, the 
organization of the research paper is presented using 
the flowchart. The flow chart is shown in Figure 2. 

 

 

Figure 2. A flowchart shows the organization of the 
research paper after the introduction section 

 
1.1. The novelty of the present work 

The authors have reviewed plenty of research 
papers on delamination of composite beams and 
plates, i.e., Liu et al. [1], Shankar et al. [2], Sultan et 
al. [22], Srikanth et al. [27], and Zhang et al. [28], on 
glass fiber reinforced polymers beams, carbon fiber 
reinforced polymers beams, woven fiber glass 
laminate plates, epoxy composite laminate plates, etc. 
They found very limited papers on vibration studies 
of delaminated fiber metal laminate beams. This 
motivated the authors to do the delamination 
detection in fiber metal laminate composite beams 
because of their practical importance, and this is the 
main novelty of this research study. 

In this research study, for better estimation of 
severity (size) and location of the delamination, the 
problem is divided into two phases. The first phase is 
training the natural frequencies for different 
delamination scenarios and is generated using 
artificial neural networks, for which a dataset of the 
first five natural frequencies for different 
delamination scenarios is generated using finite 
element modeling techniques. Similarly, a regression 
model was developed using the dataset of first 
normalized natural frequency and the normalized 
delamination location. In the regression model, the 
natural frequency and the delamination location act as 
a dependent and independent variable. Equation 5 

gives the relationship between the normalized natural 
frequency and normalized delamination location. 
During the second phase, the inverse problem is 
solved using artificial neural networks and regression 
models to predict the delamination parameters.  
 

1.2. Material and geometric properties of 
the beam 
 

The material properties and geometric properties 
of the FML (Aluminum, Glass fibers, and Carbon 
fibers) were taken from the previous study [3]. The 
material properties are presented in the Table 1 and 
Table 2. 

 

Table 1. Material properties of Aluminum sheet [3] 
Property Aluminum 
E1 (N/m2) 70.6 
Ϸ (kg/m3) 2780 
𝞵𝞵 0.3 

 

Table 2. Material properties of FMLs composite beam [3] 
Property Glass fiber 

epoxy 
Carbon 
fiber epoxy 

E1 (N/m2) 7e9 17.5e9 
E2 (N/m2) 1e9 5e9 
E3 (N/m2) 7e9 17.5e9 
G12 (N/m2) 2.5e9 10.5e9 
G13 (N/m2) 1e9 2e9 
G23 (N/m2) 2.5e9 10.5e9 
𝞵𝞵12 0.22 0.24 
𝞵𝞵13 0.22 0.24 
𝞵𝞵23 0.22 0.24 
ρ (kg/m3) 2440 1750 

 
In order to do the de-lamination study in the 

present research paper, a 2/1 configuration of FML 
composite beam (Aluminum/Glass fiber 
epoxy/Aluminum) was considered. In this study, the 
material properties presented in Table 1 and Table 2 
were considered. The new geometric properties were 
chosen in the present research study and they are 
presented in Table 3. 

 
Table 3. Geometric properties of FML composite beam 

Materials Length 
(mm) 

Width 
(mm) 

Thickness 
(mm) 

Al 500 25 0.88 

GF-E 500 25 2.56 



 

RJAV vol 20 issue 1/2023                                           51                                                         ISSN 1584-7284 

 
Figure 3. Intact FML (AL/GF-E/AL) 2/1 configurations 

composite beam 
 

 

Figure 4. Delaminated FML (AL/GF-E/AL) 2/1 
configurations composite beam 

 

2. SIMULATED DE-LAMINATION 
CONFIGURATIONS 
 

In this research study, eighty-seven specimens 
were considered. This study was further divided into 
case 1 and case 2. In case 1, one intact specimen was 
considered to normalize the first five bending natural 
frequencies. In case 2, 86 specimens were there, and 
all these specimens carried the delamination patch 
along the entire width. The one case of intact (non-
delaminated) composite beam and delaminated 
composite beam is shown in Figure3 and Figure4, 
respectively. This case was again divided into two 
sub-cases, i.e., sub-case 1 and sub-case 2.  

Sub-case 1: This sub-case carried 43 specimens. 
De-lamination was provided between the first and 
second layers, and perfect bonding was there between 
the second and third layers. The delamination length 
on the specimens was varied from 5 mm to 215 mm 
by an interval of 5 mm from the free end of the 
composite beam. 

Sub-case 2: This sub-case was like sub-case 1; the 
only difference was that instead of layer number 1 and 
layer number 2, the delamination was considered 
between layer number 2 and layer number 3. It is also 
shown in Figure 2. 
 

3. DELAMINATION DETECTION 
METHOD 

3.1. Inverse method of delamination 
detection using a regression model 

This research study proposes a regression model 
as a forward approach between the normalized natural 

frequency and normalized delamination location. It is 
given in Equation (1). 

𝒀𝒀 = 𝒇𝒇 �𝒍𝒍𝟏𝟏
𝑳𝑳
�                                  (1) 

Y is the ratio between the natural frequency of the 
delaminated beam and the natural frequency of the 
intact composite beam.  
l1/L is the ratio of the distance of the delamination 
from the cantilevered end to the length of the beam.  

𝒀𝒀 − 𝒇𝒇 �𝒍𝒍𝟏𝟏
𝑳𝑳
� = 𝟎𝟎                                 (2) 

Then, an inverse method using a regression model 
is proposed to predict the delamination location in the 
cantilever beam. The regression model was 
developed using the dataset presented in the Table 5. 
Only one dependent variable (fr1) and one 
independent variable (l1/L) was considered to develop 
the regression model. The Equation (4) was used to 
predict the delamination location ratio (l1/L). To 
determine the delamination locations in a cantilever 
beam, the first normalized natural frequency (fr1) was 
used and, it was substituted in Equation (5). 
Afterward, Equation (4) was used to compute the 
delaminated area. l2 and w are the length and width of 
the delamination, respectively, are shown in Figure 4. 
Delamination was considered along the entire width 
of the beam. The delamination patch (𝐴𝐴 = 𝑤𝑤 ∗  𝑙𝑙2 )on 
the composite beam is also shown in Figure 4. 

𝒍𝒍𝟏𝟏 + 𝒍𝒍𝟐𝟐 = 𝑳𝑳 

𝒍𝒍𝟐𝟐 = 𝑳𝑳 − 𝒍𝒍𝟏𝟏                            (3) 

𝑨𝑨 = 𝒘𝒘 ∗ 𝒍𝒍𝟐𝟐                             (4) 

 

3.2. Correlation model 
The natural frequency of the delaminated beam 

was normalized with that of the intact beam. Y is the 
normalized natural frequency in the first bending 
mode. The normalized natural frequency(𝒀𝒀) was 
plotted against the delamination location ratio�𝒍𝒍𝟏𝟏

𝑳𝑳
�. 

The first bending natural frequency was used to 
obtain the regression model for the curve fitting. Only 
one Equation was required to find an unknown 
parameter, i.e., delamination location. Based on the 
non-linear relationship between the delamination 
parameter and frequency ratios, non-linear 
polynomial curve fitting was used to get the first 
natural frequency ratio equation at the first mode. 
Equation 5 was developed using the data set of 
delaminated composite beam specimens. The second-
order correlation model presented in Equation (5) was 
generated by regression analysis using Microsoft 
Excel. The R-squared values generally determine the 
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reliability of the correlation models. The R-squared 
value nearer to ‘1’ represents the excellent fit of the 
data on the generated correlation models. In the 
present work, the R-squared values of the generated 
correlation models are shown in Figure 5. To 
determine the delamination locations in a cantilever 
beam, the first normalized natural frequency was used 
and, it was substituted in Equation (5). Delamination 
location ratios computed using the Microsoft Excel 
solver. In this research study, FMLs composite beam 
was analyzed for the first five natural bending 
frequencies. To develop the regression model, first 
natural frequencies were considered. 
 

−𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎�
𝒍𝒍𝟏𝟏
𝑳𝑳�

𝟐𝟐

+ 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎�
𝒍𝒍𝟏𝟏
𝑳𝑳� + 𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗 = 𝒀𝒀 

 
−𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎�𝒍𝒍𝟏𝟏

𝑳𝑳
�
𝟐𝟐

+ 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎�𝒍𝒍𝟏𝟏
𝑳𝑳
� + 𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗 − 𝒀𝒀 = 𝟎𝟎     (5) 

 

 
Figure 5. Regression model between first relative 

bending natural frequency (f1/fn1) and delamination 
location ratio (l1/L). 

 
4. FEA MODELING AND ANALYSIS 
 

ANSYS 12.1 commercial software was the FE 
tool used to create a finite element model of 
undamaged and delaminated three-dimensional 
cantilever composite beams. The beam model used 
here was made up of a 3-layer laminate. The material 
property of the composite beam (for giving input in 
FEA) was obtained through previous studies. 
Furthermore, all these properties are given in Table 1 
and Table 2. The solid 185 layered element was used 
for modeling the beams as the composite beam is 
under the three-dimensional modeling of solid 
structures. Shell elements define information 
regarding each layer. A shell element was used to 
give the information about each layer. Moreover, only 
one element was considered along the thickness of 
each layer. A mesh sensitivity analysis was 
performed, and the optimum number of elements was 
determined to achieve the balance between the 

computational time and model parameter accuracy. 
Contact elements (CONTAC173) and target elements 
(TARGET 170) ensure the perfect bonding and de-
bonding between the two surfaces. The first five 
bending natural frequencies of the delaminated beams 
were obtained using the modal analysis ANSYS. The 
first five bending natural frequencies of delaminated 
FML composite beams are presented in Table 5. 
Similarly, the first three bending natural frequencies, 
non-delaminated FML composite beam [3], are 
presented in Table 6. 

 
5. ARTIFICIAL NEURAL NETWORK 

MODELING AND ANALYSIS 
 

ANN technique is used for delamination 
prediction in beams. The ability to learn from 
experience in order to enhance results is the most 
important aspect of ANN. As a consequence, ANN 
can be used in a number of applications, including 
classification, control systems, detection, image 
processing, and pattern recognition. The artificial 
Neural Network classifier is based on the human 
brain structure. Nodes are connected with the neurons 
in the brain. It is a feed-forward artificial neural 
network where the mapping between inputs and 
output is nonlinear. It has input and output layers and 
multiple hidden layers with many neurons [25, 26]. 
The learning methodology adopted to train an ANN 
is Back propagation. The learning process combines 
many hidden layers, the number of nodes in each of 
the hidden layers, and connection weight. 
Backpropagation allows for the adjustment of the 
weights in the network iteratively. Inputs were 
combined with the initial weights and fed to the 
nonlinear activation function. From the hidden layers 
to the output layer, each layer's output is fed as input 
to the next layer. Output is compared with the 
expected value. The computed errors are propagated 
backward from the output to the preceding layer. The 
error propagated back to adjusting the 
interconnection weights between the layers. Back 
propagation is done using a Gradient Descent. The 
partial derivative of the Mean Squared Error function 
was calculated for interconnection weights. Then, to 
propagate the error back, the weights of the first 
hidden layer were updated with the gradient value. 
This process kept going until the gradient for each 
input-output pair converged. The hyper parameters of 
the neural network are presented in Table 4.  

The information regarding input, hidden layer and 
output layer is shown in Figure 6. The ANN model 
was implemented with three input layers, ten hidden 
layers, and two output layers. First, five normalized 
bending natural frequencies presented in Table 5 were 

Y = - 0.0011(l1/L)2 + 0.003(l1/L) + 
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chosen as input parameters; relative delamination 
location was selected as the output parameter. ANN 
maps these inputs with the output. Using the hyper-
parameters, the ANN model was tuned.  

The hyper-parameters are listed in Table 4. 
Artificial neural networking (ANN) in MATLAB is 
used to analyse and predict the location of 
delamination in the beam. In MATLAB, the desired 
inputs and output or target are imported into the 
workspace and, using the “nntool” network, is created 
using inputs and targets. Here, a typical three-layered 
Feed Forward Back Propagation (FFBP) neural 
network is considered.The first five normalized 
natural frequencies (fr1, fr2, fr3, fr4and fr5) were taken 
as input parameters; delamination location was taken 
as the output parameter(l1/L, A).  

The various functions used are: Levenberg 
Marquardt (trainlm) is taken as a training function, 
LEARNGDM is taken as an adaption learning 

function, mean square error (MSE) taken as a 
performance function and Sigmoid function (tansig) 
as a transfer function.  

The regression plot regarding training, validation 
and testing is shown in Figure 7. It shows that the 
predicted data is well fitted to the actual output. 

 

Table 4. Hyper-parameter of Artificial Neural Network 
Sr. 
No. 

Input parameters for training Values 

01 Learning rate 0.1 
02 Number of epochs 1000 
03 Number of nodes in input layer 05 
04 Number of neurons in the 

hidden layer 
10 

06 Number of nodes in output 
layer 

01 

07 Goal zero 
 

 

 
Figure 6. Feed forward back propagation neural network 

 

Figure 7. Regression plot 
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Table 5. Training data of normalized natural frequencies (interface 1) to the neural network 
Sr. No. L1/L fr1 fr2 fr3 fr4 fr5 

Interface 1 
01 0.99 1 1 1 0.999955157 0.999969568 
02 0.98 1 0.999984415 1 0.999910314 0.999957395 
03 0.97 1 0.999965367 1 0.999865471 0.999939136 
04 0.96 0.999975518 0.999954978 1 0.999641256 0.999920876 
05 0.95 0.999918394 0.999948051 1 0.999820628 0.999878271 
06 0.94 0.999918394 0.999941125 1 0.999798206 0.999872794 
07 0.93 0.999918394 0.999930735 1 0.999775785 0.999872185 
08 0.92 0.999918394 0.999930735 1 0.999775785 0.999869142 
09 0.91 0.999918394 0.999930735 1 0.999775785 0.999866099 
10 0.9 0.999918394 0.999923808 1 0.9997713 0.999864881 
11 0.89 0.999918394 0.999913418 1 0.9997713 0.999863055 
12 0.88 0.999918394 0.999906492 0.999993974 0.999772646 0.999861838 
13 0.87 0.999918394 0.999896102 0.999992467 0.9997713 0.999860012 
14 0.86 0.999918394 0.999896102 0.999990207 0.9997713 0.999858795 
15 0.85 0.999836788 0.999896102 0.999984934 0.9997713 0.999856969 
16 0.84 0.999836788 0.999882249 0.999981921 0.999769058 0.999855752 
17 0.83 0.999836788 0.999878786 0.999977401 0.999766816 0.999853926 
18 0.82 0.999836788 0.999878786 0.999962335 0.999764126 0.999850883 
19 0.81 0.999836788 0.999878786 0.999932203 0.999762332 0.999847839 
20 0.8 0.999804146 0.999878786 0.999917137 0.999758296 0.999844796 
21 0.79 0.999755182 0.999878786 0.999887006 0.999753363 0.99983871 
22 0.78 0.999755182 0.999878786 0.999849341 0.999749327 0.999835666 
23 0.77 0.999755182 0.999878786 0.999811676 0.999744395 0.99982958 
24 0.76 0.999755182 0.999878786 0.999736347 0.999735426 0.999823494 
25 0.75 0.999755182 0.999878786 0.999706215 0.999730942 0.999817407 
26 0.74 0.999673576 0.999878786 0.999608286 0.999726457 0.999814364 
27 0.73 0.999673576 0.999878786 0.999570621 0.999721973 0.999805234 
28 0.72 0.999673576 0.999878786 0.999472693 0.999717489 0.999802191 
29 0.71 0.999673576 0.999878786 0.999382298 0.99970852 0.999796105 
30 0.7 0.999673576 0.999864933 0.99926177 0.999704036 0.999790018 
31 0.69 0.999673576 0.999861469 0.999156309 0.999699552 0.999786975 
32 0.68 0.999624612 0.999861469 0.99900565 0.999695067 0.999783932 
33 0.67 0.99959197 0.999861469 0.998877589 0.999690583 0.999780889 
34 0.66 0.99959197 0.999854543 0.998870056 0.999688789 0.999779671 
35 0.65 0.99959197 0.999844153 0.998561205 0.999686099 0.999777845 
36 0.64 0.99959197 0.999835495 0.998403013 0.999683857 0.999776019 
37 0.63 0.99959197 0.999826837 0.998207156 0.999681614 0.999774802 
38 0.62 0.999551167 0.99981991 0.997973635 0.999681614 0.999774802 
39 0.61 0.999510364 0.999809521 0.997845574 0.999681614 0.999774802 
40 0.6 0.999510364 0.999792204 0.997649718 0.999681614 0.999774802 
41 0.59 0.999510364 0.999774888 0.99747646 0.999681614 0.999774802 
42 0.58 0.999469561 0.993004208 0.997288136 0.999681614 0.999774802 
43 0.57 0.999428758 0.999722939 0.997129944 0.999681614 0.999774802 

6. DATABASE GENERATION 
 

For training the inverse algorithm, a database 
consisting of shifts in natural frequencies is required 
because of known delaminations. As analytical 
expressions for vibration of the delaminated 
composites are complicated and conducting 
experiments is costly, the required database is 
generated with the help of a finite element tool. FE 
simulation was conducted on many composite beam 
models with different sizes and locations of 

delamination. The database size used for training 
ANN plays a crucial role in accurately determining 
the delamination’s (location and severity). For this 
work, 43 different delamination scenarios were 
generated numerically. The first five natural 
frequencies were obtained for all the delamination 
scenarios and they were used as input to ANN while 
delamination location ratio and size were used as 
output to ANN. Thirty-seven input–output datasets 
were given to the ANN for training purposes and the 
rest were used for the validation process. 
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7. RESULTS AND DISCUSSION 

 
In order to check the correctness of the approach 

to the numerical modeling, four cases of previously 
published papers were solved to get the first three 
bending natural frequencies.  

The obtained numerical bending natural 
frequencies were compared with the published 
experimental results, and good agreement was found. 
The results of natural frequencies of all the 
configurationare presented in Table 6.  

In this study, free vibrations of intact and later 
delaminated beams that had different delamination 
locations and areas were investigated numerically. 
The natural frequencies of the beams were 
determined and then the relationship between the 
delamination locations and the variation in the natural 
frequency was investigated.  

The first five bending natural frequencies were 
determined for the intact and delaminated beams 
using the numerical method. Afterwards, the natural 
frequencies were normalized (natural frequency of 
delaminated beam and natural frequency of non-
delaminated or intact beam). The data set of 
normalized natural frequencies was used to develop 
the regression model and machine learning model.  

In order to detect the location and severity of 
delamination in a 2/1 (Aluminum/Glass fiber 

epoxy/Aluminum) configuration, FML composite 
beam was considered. The same material properties 
of the previous study were considered and used. It is 
presented in Table 1 and Table 2.  

The delamination study's chosen geometric 
properties of composite beams are presented in Table 
3. To develop the machine learning and regression 
model the dataset presented in Table 5 was referred. 
The predicted delamination locations and severity 
give a good agreement and theyare shown in Figure 8 
and 9. It is also presented in the Table 7 to Table 10.  

Figures 8and 9 show the predicted delamination 
locations and severity using the machine learning and 
regression models in composite beams. It was found 
that the ANN (Machine learning model) and 
regression model gave good results regarding the 
prediction of delamination locations and severity.  

The machine learning model gave -0.3809% and 
3.536% as the maximum error while predicting the 
delaminationlocations and areas. Furthermore, the 
regression model gave -4.71% and 30.95% as the 
maximum error to predict the delamination locations 
and area. Similarly, the Machine learning model gave 
0.1449% and 0.3215 % as minimum error while 
predicting the delamination locations and 
delamination area. And the regression model gave -
0.1904 % and -1.01% as a minimum errors while 
predicting the delamination locations and 
delamination area. 

 

 
 

Figure 8. Predicted delamination ratio for different samples using machine learning and regression model 
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Figure 9. Predicted delamination area for different samples using the machine learning and regression model 

Table 6. Numerical and experimental bending natural frequencies (f1, f2and f3) of 2/1(H1 and H2) and 3/2 (H3 and 
H4)configurations of fiber metal laminate composite beam 

Configurations of 
FMLs beam 

 

f1 (hz) 
Exp. 
[3] 

f1 (hz) 
Numerical  

% 
error 

f2 
(hz) 
Exp. 
[3] 

f2 (hz) 
Numerical  

 
% 

error 

f3 
(hz) 
Exp. 
[3] 

f3 (hz) 
Numerical  

% 
error 

H1 (2/1) 29.03 28.497 1.83 187 178.34 4.63 525 498.81 4.98 
H2 (2/1) 21.5 28.29 24 159 177.06 10.19 458 495.28 7.52 
H3 (3/2) 48.64 45.512 6.43 298 284.58 4.5 871 794.4 8.79 
H4 (3/2) 41.77 40.203 3.75 266 251.66 5.39 716 704.431 1.61 

 

Table 7. Comparison between Actual and predicted ANN outputs of delamination location. 

fr1 fr2 fr3 fr4 fr5 Actual, 
L1/L Predicted, L1/L % error 

0.99991839 0.99994112 1 0.99979820 0.99987279 0.94 0.9378 0.2340 
0.9999183 0.99993073 1 0.999775785 0.999869142 0.92 0.9179 0.2282 

0.99983678 0.99988224 0.9999819 0.999769058 0.999855752 0.84 0.8432 -0.3809 
0.99975518 0.99987878 0.9998116 0.999744395 0.99982958 0.77 0.7723 -0.2987 
0.99967357 0.99987878 0.9995706 0.999721973 0.999805234 0.73 0.7319 -0.2602 
0.99967357 0.99986146 0.9991563 0.999699552 0.999786975 0.69 0.689 0.1449 

0.9995511 0.99981991 0.9979736 0.999681614 0.999774802 0.62 0.6186 0.2258 
 

Table 8. Comparison between Actual and predicted ANN outputs of delamination area 

fr1 fr2 fr3 fr4 fr5 Actual,A Predicted, 
A 

% 
error 

0.99991839 0.99994112 1 0.99979820 0.99987279 1500 1555 3.536 
0.9999183 0.99993073 1 0.999775785 0.999869142 2000 2052.5 2.557 

0.99983678 0.99988224 0.9999819 0.999769058 0.999855752 4000 3920 -2.04 
0.99975518 0.99987878 0.9998116 0.999744395 0.99982958 5750 5692.5 -1.01 
0.99967357 0.99987878 0.9995706 0.999721973 0.999805234 6750 6702.5 -0.708 
0.99967357 0.99986146 0.9991563 0.999699552 0.999786975 7750 7775 0.3215 

0.9995511 0.99981991 0.9979736 0.999681614 0.999774802 9500 9535 0.367 
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Table 9. Comparison between Actual and predicted regression model outputs of delamination location 

fr1 fr2 fr3 fr4 fr5 Actual, 
L1/L 

Predicted, 
L1/L 

% 
error 

0.99991839 0.99994112 1 0.99979820 0.99987279 0.94 0.9131 2.861 
0.9999183 0.99993073 1 0.999775785 0.999869142 0.92 0.9131 0.75 

0.99983678 0.99988224 0.9999819 0.999769058 0.999855752 0.84 0.8416 -0.1904 
0.99975518 0.99987878 0.9998116 0.999744395 0.99982958 0.77 0.7795 -1.233 
0.99967357 0.99987878 0.9995706 0.999721973 0.999805234 0.73 0.7225 1.027 
0.99967357 0.99986146 0.9991563 0.999699552 0.999786975 0.69 0.7225 -4.71 
0.9995511 0.99981991 0.9979736 0.999681614 0.999774802 0.62 0.6423 -3.596 

 

Table 10. Comparison between Actual and predicted regression model outputs of delamination area 

fr1 fr2 fr3 fr4 fr5 Actual, 
A 

Predicted, 
A 

% 
error 

0.99991839 0.99994112 1 0.99979820 0.99987279 1500 2172.5 30.95 
0.9999183 0.99993073 1 0.999775785 0.999869142 2000 2172.5 7.94 

0.99983678 0.99988224 0.9999819 0.999769058 0.999855752 4000 3960 -1.01 
0.99975518 0.99987878 0.9998116 0.999744395 0.99982958 5750 5512.5 -4.308 
0.99967357 0.99987878 0.9995706 0.999721973 0.999805234 6750 6937.5 2.702 
0.99967357 0.99986146 0.9991563 0.999699552 0.999786975 7750 6937.5 -11.71 

0.9995511 0.99981991 0.9979736 0.999681614 0.999774802 9500 8942.5 -6.234 
 

8. CONCLUSIONS 
 

In this study, vibration-based analysis is used on 
FMLs composite beams to predict the delamination's 
location and severity. It was observed that 
delamination in composite beams significantly 
degrades natural frequencies. The first and third 
natural frequencies degrade significantly with 
increasing delamination size compared to the second, 
fourth, and fifth natural frequencies. First, five natural 
frequencies are input to ANN, and delamination 
scenarios (locations and sizes) are taken as output. A 
Dataset consisting of 43 input-output pairs has been 
generated from different delamination scenarios and 
used for the training and validation of a feed-forward 
multilayer back-propagation Artificial Neural 
Network. Numerically simulated frequency data 
evaluated the ANN and Regression model's location 
and severity prediction accuracy. The ANN and 
regression model predicts delamination length and 
area with better accuracy. Hence, a neural controller 
can be programmed, trained, and installed on the 
structure for structural health monitoring. Then it will 
lead to giving the damage information accurately. 
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