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Abstract: - Engineering structures that undergo fluctuating loads frequently exhibit structural nonlinearity. 
In a general perspective, linear concept can be utilized to partially analyze nonlinear systems, but in bolted 
joint structures non-linearity has to be considered for defining the joint behavior. The current research work 
provides a mathematical model for the parametric identification of non-linear structural elements. The 
frequency equation is derived using the idea of sub-structure synthesis with both non-linear and linear 
stiffness characteristics. The generated equation is further utilized in inverse analysis to estimate a non-
linear parameter. The present work is numerically analyzed using a cantilever beam with a non-linear 
boundary condition. The method provides précised approximations for a broad range of non-linear stiffness 
values. The work concludes less than 10% of error between the developed mathematical model and 
experimentation. 
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List of Symbols and Abbreviations 

K1 Linear translational stiffness 
K2* Non-linear rotational stiffness 
B Subsystem (Bolted Joint) 
C Subsystem (Cantilever Beam) 
L Length of beam 

FRF Frequency Response Function 
[β] FRF matrix of subsystem B 
[γ] FRF matrix of subsystem C 

β11, β22 Direct receptance for subsystem B  
β12, β21 Cross receptance for subsystem B 
γ11 , γ22 Direct receptance for subsystem C 

γ12 Cross receptance for subsystem B 
λ Non-dimensional frequency  
EI Bending stiffness 
ω Flexural vibration’s natural frequency 
ρA Linear mass density function 
K4L Cubic type stiffness non linearity 
K2 Linear rotational stiffness  
θ(t) Angular displacement or rotation of the 

system 
F(t) Forcing function, which is an external 

excitation or force acting on the system. 
(Sinusoidal force applied to the system) 

Fo Amplitude of the external force 
θ 3(t) Cubic term, representing the cubic 

nonlinearity in the system 
K4 Cubic stiffness coefficient 

θθ Non-linear system’s harmonic response 
amplitude with applied harmonic force 

∆ Denominator of the receptance 
functions 

X Acceleration in the direction along X 
axis (side to side movement) 

Y Acceleration in the direction along Y 
axis (up and down movement) 

Z Acceleration in the direction along Z 
axis (depth or front-to-back movement) 

 
1. INTRODUCTION  
 

The force reconstruction approach was used which 
was purely based on the nonlinear system recognition 
technique  where the  base excitation was treated as 
an input [1]. A joint is a link between two or more 
parts of a structure, and it is an important part of any 
building. The classification of a joint is contingent 
upon its behavior, which can be either linear or 
nonlinear [2]. A joint having nonlinearity is 
characterized by a load-displacement relationship 
which deviates it from linearity. Nonlinear joints can 
be of types like geometrically nonlinear joints and 
material nonlinear joints [3]. Geometrically nonlinear 
joints are having the presence of significant rotations 
or displacements resulting from the joint's geometry, 
as opposed to other factors. When a material's 
nonlinear behavior such as creep, plasticity, or 
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viscoelasticity, contributes to joint deformation, at 
that case, joint is material nonlinear [4]. The complex 
structure of nonlinear joints renders their behavior 
challenging to anticipate. A thorough understanding 
of the behavior is essential for ensuring that structures 
are designed to withstand the loads they will 
experience throughout their lifespan [5]. The analysis 
of nonlinear joints necessitates the utilization of 
modern numerical techniques, such as finite element 
analysis, which can mimic the behavior of joints 
under a variety of different loading circumstances [6]. 

Nonlinear joints are utilized in engineering 
encompassing multiple disciplines including 
aerospace, civil, mechanical, and automotive 
engineering [7]. By improving the mathematical 
models with cubic stiffening nonlinearity, a better 
understanding of the nonlinear behavior in bolted 
joints can be achieved and a more realistic 
representation of the actual behavior of bolted joints 
can be studied [8]. In civil engineering, nonlinear 
joints are used to connect different structural elements 
in buildings, bridges, and other infrastructure [9]. In 
mechanical engineering, nonlinear joints are used in 
the design of machinery, such as gears and bearings. 
In automotive engineering, nonlinear joints are used 
to connect different parts of a car, such as the 
suspension and the chassis [10]. Every structural 
assembly must be attached in some way, whether it is 
by riveting, welding, or innovative, complicated 
fastenings like smart joints [11]. In spacecraft, 
connectors are used to assemble the substructures by 
joints and hinges. As the connector possesses 
nonlinear properties, it strongly affects the dynamic 
characteristics of the spacecraft [12]. Connectors 
serve an important function in spacecraft by allowing 
substructures to be attached and hinged. The 
nonlinear features of these connectors have a 
significant impact on the spacecraft's dynamic 
qualities [13]. Using force state mapping approaches, 
nonlinear joint model parametric identification can be 
identified by Iwan Modelling, Runge Kutta Method, 
Frequency Response Function (FRF) for computing 
FRFs of a substructure [14]. The coupling-
identification method is also used to expressly 
improve the joint identification's precision [15]. To 
provide a generic equation for the proportional 
viscous damping ratio, which is utilised to determine 
response parameters, the concept of equivalent 
viscous damping as a nonlinear quantity was 
established [16]. Based on the idea of multi-harmonic 
balance, a generic technique for the identification of 
the lively aspects of the nonlinear joint has been 
created and tested, successfully identifying the 
nonlinear characteristics of joints [17]. Substructure 
synthesis theory generated a nonlinear element 
parametric identification frequency equation. The 

nonlinear amplitude response was calculated using 
curve fitting. Experimental and analytical values 
matched well [18]. The Iwan model is also utilized to 
perfectly replace the experimental joint phenomenon 
and to describe the nonlinear property theory of 
elements that include pinning, macro and micro       
slip [19]. 

Rahmati [20] conducted an experiment using an 
Alumina Honeycomb Panel (AHP) that included 
multiple bolted joints using nonlinear dynamics 
modelling and parametric recognition. Dynamic FEM 
responses in the time domain were obtained using the 
nonlinear module, and they were later transformed 
into frequency domain analysis. Force state mapping 
approach was used to identify nonlinear joint 
parameters from time-domain acceleration data in 
response to single-frequency stimulation close to the 
initial natural frequency [21]. Jacobs et. al [22] 
combined frequency and time domain techniques, 
using time domain, restored force plots to define the 
amplitude and frequency characteristics of non-
linearities. These non-linear characteristics were then 
used in the output for the formulation of the nonlinear 
recognition, resulting in a model that can be used to 
simulate device responses with linear and non-linear 
frequency response functions of suspension systems 
of automobiles which was used in this method. 

The task of designing nonlinear joints is a complex 
undertaking that necessitates a profound 
comprehension of the behavior of materials and 
structures. The type of loading the joint will 
encounter, the joint's geometry, and the qualities of 
the materials that will be utilized must all be taken 
into account when designing nonlinear joints. 
Additionally, there is a need for considering effects of 
corrosion, fatigue, and other parameters which can 
significantly affect the performance of a joint above 
timespan. 

In the field of dynamic analysis of complicated 
structures, a set of techniques for substructure 
synthesis has been devised. The aforementioned 
techniques take into account the notion that a 
convoluted framework is comprised of interlinked 
sub-frameworks. The synthesis of the overall 
structure dynamics is achieved by suitably integrating 
the dynamics of the constituent substructures. The 
dynamics of the substructure can be analyzed 
independently and subsequently integrated to form 
the comprehensive overall structure. The 
aforementioned technique has been expanded for the 
purpose of dynamic system analysis and has been 
employed by numerous scholars in the recent era. 
Yang et al. [23] devised a combined parameter 
identification approach employing substructure 
synthesis and frequency response functions (FRFs). 
This article refined the approaches of Tsai and Chou 
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[24] and Wang and Liou [25]and derived joint 
identification equations. The joint model was 
matrixed. Rotational degrees of freedom were 
obtained from the correctly calibrated finite element 
model of the unconstrained (or free–free) structure. 
The joint's translational and rotational stiffness was 
then determined using substructure synthesis. The 
parameters substantially influence the results' 
correctness. Accurately identify the sensitive joint's 
rotational stiffness. In the insensitive zone, 
translational stiffness results are less accurate. Lee 
and Hwang [26] used frequency response function 
(FRF)-based substructuring and optimization to 
uncover joint structural parameters in complex 
systems. Gradient-based optimization was utilized to 
estimate joint parameters using FRF. Noise and 
stiffness parameters affected accuracy. Celic and 
Boltezar's [27] joint identification approach 
considered mass, stiffness, damping, and rotation. 
FRF data from a calibrated FE model estimated 
unmeasured FRFs and damping. Sjovall and 
Abrahamsson [28] used FRFs to create a non-
parametric model for system identification in linear 
structural dynamics. Gillich and Nedelcu [29] 
performed experiments on cantilever beams with 
cracks and imperfect clamped ends using 
sophisticated models to ascertain the true modal 
characteristics and evaluate the location of the crack 
and fixture imperfection. Cristian and Gillich [30] 
outline a process for creating an artificially intelligent 
system that can determine whether a beam is 
impacted by cross-sectional cracks. It can also 
determine the natural frequency loss that transverse 
cracks cause, even when the beam is not securely 
fastened. 

The task of identifying joint properties holds 
significant importance in the prediction of dynamic 
characteristics of mechanical and structural systems. 
The numerical methodologies employed in 
addressing structural dynamic issues, such as Finite 
Element Method (FEM), frequently yield outcomes 
that diverge from those obtained through 
experimental measurements. In earlier analysis, joints 
were simplified by assuming ideal boundary 
conditions such as a fixed joint or a simply supported 
joint etc. However, the analytical or FEM models 
with the simplified boundary conditions fail to predict 
the modal parameters accurately and often the 
deviation is significant enough asking for the need of 
proper joint modeling in the analysis.  

The present research is focused upon the 
formulation of a mathematical model to effectively 
discern the parameters of non-linear structural 
components. To achieve this, the concept of sub-
structure synthesis is used which combines both non-
linear and linear stiffness characteristics for 

formulation of the comprehensive equation that 
describes the dynamic behavior of the system. Further 
analysis was done by comparing the results from a 
mathematical model with experimental data. The 
derived frequency equation is then utilized in inverse 
analysis to estimate the non-linear parameter. The 
research work validates the efficacy of the 
mathematical model on a cantilever beam, shows a 
higher degree of accuracy while comparing with 
experimental results. With the increasing demand for 
complex and efficient engineering structures, the 
study of nonlinear joints will continue to be an 
important area of research and development. 
 
2. DEVELOPMENT OF MATHEMATICAL 
MODELLING 
 

For non-linear joint parameter estimation, a 
cantilever beam having non-linear rotational stiffness 
(K2*) and linear translational stiffness (K1) is 
considered with as shown in fig.1 and fig.2. 

 

 
 

Figure 1. Cantilever beam model with nonlinear 
rotational spring stiffness, and linear translation spring 

stiffness K1 and elastic support at fixed end 
 

 
Figure 2. Cantilever Beam having sub-system C and B 
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Subsystem B's FRF Matrix is depicted as a 
diagonal matrix [𝛽𝛽] [18] 

 

[β] = �
β11 β12
β21 β22

� = �

1
K1

0

0 1
K2∗
�                            (1) 

  
  
Where, β11, β22 are direct receptance for subsystem 

B and β12, β21 are cross receptance for subsystem B. 
 
FRF Matrix for subsystem C [γ] 
 

γ11 =  �−L
3

EI
� � 1

λ3
� �F5

F3
�                (2) 

γ22 =  � L
EI
� �1

λ
� �F6

F3
�     (3) 

γ12 =  �L
2

EI
� � 1

λ2
� �F1

F3
� = γ21   (4) 

 
The non-dimensional frequency (λ) 

λ =  �ω
2ρAL4

EI
�
1
4�                 (5) 

 
Where, L is beam length, EI is bending stiffness, 

ω is flexural vibration’s natural frequency, ρA is the 
linear mass density function. 

In this research, rotational stiffness is used as a 
cubic type stiffness non linearity for parametric 
identification with principle of sub structure 
synthesis.  

Nonlinear K2* can be calculated by  
K2* = K2 + K4L    (6) 

Where K2* is the nonlinear stiffness, K2 is the 
linear stiffness parameter, K4L is the cubic type 
stiffness non linearity. 

The derivation of the describing function for the 
nonlinearity of cubic type stiffness can be 
accomplished through the utilization of the harmonic 
balance method as below. 

K2θ(t)+ K4θ3(t) = F(t)   (7) 
�K2 + 3

4
 K4  θθ2� θθ = F0   (8) 

From equation (6) and equation (8), we get, 
K4L ≅

3
4

K4θθ
2     (9) 

Where, K4 is the cubic stiffness coefficient, θθ is a 
non-linear system’s harmonic response amplitude 
with applied harmonic force. 

Setting the denominator of the receptance 
functions (∆) to zero, a frequency equation of 
composite system will be, 
∆= �β11 + γ11��β22 + γ22� − �β12 + γ12�

2
 = 0 

               (10) 

where, β11, β22 are direct receptance of sub        
system B 
β12 or   β21 are cross receptance of sub system B 
γ11, γ22 are the direct receptance of sub system C 
γ12 or γ21are the cross receptance of sub system C 

 
Now, rearranging the harmonic balance equation 

by using sub structure synthesis theory, we get, 
K1K2 + K1K4L + [Ax]NL K1 − [Bx]NL K2 −
[Bx]NL K4L =  [Cx]NL  

              (11) 
K1K2 + �Ay�LL K1 − �By�LL K2 =  �Cy�LL       (12) 

Subtracting equation (12) from equation (11), we get, 
�[Ax]NL − �Ay�LL�K1 + {�By�LL − [Bx]NL} K2

+ {K1 − [Bx]NL}K4L
= {[Cx]NL − �Cy�LL} 

                (13) 
Eq.11 and Eq.12 signifies presence of the linear and 
non-linear joint parameter stiffness coefficients. 
Whereas, Eq.13 gives the correlation of linear 
translatory stiffness, non-linear rotational stiffness 
with cubic stiffness non-linearity. 

 
3. EXPERIMENTAL SET UP AND 
PROCEDURE 
 

Figure 3 and Figure 4 shows experimental 
arrangement of the cantilever beam, providing a 
visual representation of the setup. The specific one 
end was bolted while external excitation was 
provided on its free end.    
 

 
Figure 3. Actual Experimental set up of a cantilever beam 

bolted at its end 
 

Cantilever Beam 

Bolted Joint 
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Figure 4. Cantilever beam bolted at its end 

 
Accelerometer (sensor) Adxl335 was used to 

measure the acceleration of gravity resulting from 
motion vibration and Arduino (Microcontroller) 
ATmega328P was used for interfacing as shown in 
Figure 5 and Figure 6.  

 

 
Figure 5. Accelerometer Adxl335 

 

 
Figure 6. Arduino ATmega328P 

 
The dimensions and material properties of beam 

are shown in the Table 1. 
OROS OR34 (Power:15 VA max.10-28V) 

Compact Vibration Analyzer is used Gathering and 
documenting vibration data obtained from sensors 
positioned on or in close proximity to the equipment 
or structure being examined. DYTRAN General 
Purpose Accelerometer (3055B1, S/N 19535) was 
utilized to evaluate the natural frequencies. 
DYNAPULSE Impulse Hammer (MODEL 5850B) 

was used to provide external excitation in order to 
capture the natural frequency.  

 

Table 1. Geometrical and material properties of beam 
(Mild Steel Plate) 

Dimensions Material Properties of 
beam 

Area of Cross section 
(A) (0.003 x 0.025) m2 

Beam Length  (L) 0.6 m 

Beam Width (w) 0.025 m 

Beam Thickness (t) 0.003 m 

Elastic modulus (E) 2.075x1011N/m2 

Density (ρ) 7800 Kg/m3 
 

A Fast Fourier Transform (FFT) analyzer was 
employed as a tool for measuring the natural 
frequencies. The accelerometer was placed on the 
bolted joint to capture frequency domain signals and 
an anvil was used for creating dynamic motion of 
cantilever beam. A signal is broken down into its 
distinct spectral components by an FFT analyzer, 
which then delivers frequency information about the 
signal. 

Through the experimentation, around 1130 sample 
reading from accelerometer sensor ADXL335 were 
captured. Table 2 shows the sample readings along x, 
y and z axis. 

 

Table 2. Sample reading from Accelerometer Sensor 
ADXL335 

X Y Z Acceleration 
-0.01 0 -0.1 0.1004988 
0.01 0 0.03 0.0316228 
0.03 0.03 0.03 0.0519615 
0.04 0 -0.04 0.0565685 
0.06 0.01 -0.01 0.0616441 
0.07 0.01 0.04 0.0812404 
0.07 0.01 -0.01 0.0714143 
0.07 0.03 -0.03 0.0818535 
0.09 0.01 -0.03 0.0953939 
0.1 0.01 0 0.1004988 
0.09 0.04 0 0.0984886 
0.09 0.01 -0.01 0.0911043 
0.1 0.01 -0.03 0.1048809 
0.1 0.01 0.01 0.100995 
0.1 0.03 0 0.1044031 
0.1 0.01 -0.03 0.1048809 
0.1 0.01 -0.03 0.1048809 
0.12 0.01 0 0.1204159 
0.12 0.03 0 0.1236932 
0.12 0.01 -0.03 0.1240967 
0.12 0.03 -0.04 0.13 
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The frequency plot obtained from acceleration 
showing normalized frequency with respect to the 
magnitude is shown in Figure 7. The plots signifies 
the nature of frequency domain signals as the 
magnitude changes from maximum displacement to 
mean and then to minimum displacement. 

 

 
Figure 7. Normalized frequency Vs. Magnitude 

 
4. RESULT AND DISCUSSION 

 
Table 3 provides the results of identified non-

dimensional natural frequencies. 
 

Table 3: Non-Dimensional Natural Frequencies 
 

Assumed 
value of 
stiffness 

parameters 
 

Response 
Amplitude 
in radian 

Non- dimensional natural 
frequency 

λ1 λ2 λ3 λ4 

Ideal 
Value 1.8 4.537 7.249 9.5660 

K1= 1.79 X 
103          

N/m 
K2= 5.98 X 
103       
  N-m/rad 
K4=0.98 X 
106 
N-m/rad3 
 

0.01 1.6277 4.3253 7.019 9.4211 

0.02 1.6277 4.3254 7.022 9.4213 

0.04 1.6278 4.3261 7.027 9.4216 

0.06 1.6279 4.3264 7.053 9.4216 

0.08 1.628 4.3266 7.0685 9.4219 

1.00 1.6281 4.3271 7.0895 9.4232 

1.12 1.6283 4.3273 7.123 9.4237 

1.14 1.6286 4.32844 7.1831 9.4249 
 

In a study, considering large response amplitudes, 
the non-linear zones within the system have been 
identified. For large response amplitude, the non-
linear zone is identified, and for a given value of the 
stiffness parameters, the non-dimensional natural 
frequencies are calculated. Non-dimensional natural 
frequencies simplify system comparison and study by 
eliminating physical dimensions. 

Significant variation at higher frequencies is seen, 
indicating the presence of nonlinear behavior. The 
presence of notable fluctuations at elevated 
frequencies suggests that the response of the system 

is no longer exclusively reliant on the amplitude or 
frequency of the excitation.  

 

 
Figure 8. Second Natural Frequency Variation                    

by Response Amplitude 
 

 
Figure 9. Third Natural Frequency Variation                   

by Response Amplitude 
 

Prior knowledge for linear stiffness parameters is 
necessary for the suggested method. The 
aforementioned parameters serve as an elementary 
structure for conducting comparisons and calibrations 
during the analysis. Fortunately, obtaining this data is 
comparatively uncomplicated, especially when 
accounting for diminished response rates within a 
particular interval. This is easily attainable at lower 
response rates considered as 0.01 radian to 1.14 
radian. For joint parameter estimation, the deviation 
of equivalent linearized stiffness K3L (N-m/rad) 
having amplitude response for mode 2 and mode 3 
using curve fitting tool is shown in Figure 10 and 
Figure 11. The aforementioned figures were utilized 
as a visual depiction of the disparities between the 
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approximated linearized stiffness and the factual non-
linear stiffness of the articulation. 

 

 
Figure 10. Variation of Equivalent Linearized Stiffness 

with Response Amplitude for Mode 2. 
 

 
Figure 11. Variation of Equivalent Linearized Stiffness 

by Response Amplitude for Mode 3. 
 

 
Figure 12. Time domain signal of beam under impact 

excitation 
 

 
Figure 13. Vibration response of cantilever beam using 

real time FFT analyzer at bolted end 

From Figure 12 and 13, it is observed that the 
frequency of a cantilever beam is often indicated by 
the first peak observed in the frequency domain. The 
presence of resonance, or a dominant vibration mode, 
is typically identified by the peak on the graph. The 
beam exhibits the highest level of vibration at this 
particular frequency when it is triggered. The 
presence of this peak suggests that the beam is 
resonating in close proximity to its natural frequency. 

Table 4 provides the results of Estimated Cubic 
Stiffness Coefficient K4 for modes 2, 3, 4 and 5. The 
aforementioned coefficient denotes the cubic 
stiffness component in the mathematical system 
employed for the analysis. It can be observed that an 
approximate K4 value, cubic stiffness coefficient, is 
quite closer to the actual value. The K4 values 
estimated exhibit a significant concurrence with the 
anticipated values derived from the system's 
performance. Similarly the percentage error is not 
more than 5% which shows the exactness of the 
model. This suggests that the mathematical model 
provides an outstanding approximation of the actual 
system behavior and indicates a high degree of 
precision. 

 
Table 4. Cubic Stiffness Coefficient value of K4 

Mode 

Estimated 
Stiffness 
Coefficient 
(Kc) 

K4=(4/3)Kc 
Exact 
Value 
of K4 

Percentage 
Error 

Second  7.5x105 1.000 x106 

0.98 x 
106 

2.0 % 

Third 7.55x105 1.007x106 2.681 % 

Fourth 7.57x105 1.009 x106 2.874 % 

Fifth 7.6x105 1.013x106 3.257 % 
 
5. CONCLUSION 

 
This research study focuses on the development of 

a technique for identifying the parameters of 
nonlinear structural elements. The frequency 
equations are obtained through the use of a sub-
structure synthesis idea. The equation that was 
created was utilized in an inverse investigation, where 
theoretically obtained, data were employed to 
estimate a non-linear parameter. The response 
amplitude in the non-linear region was determined 
using a curve fitting technique, which revealed a 
cubic stiffness non-linearity in the rotational stiffness 
parameter. The method is validated by employing 
numerical case studies that imitate experimental 
measurements using theoretically produced data. The 
results demonstrate satisfactory agreement between 
the assumed and estimated values. Evidence shows 
that a technique is resilient to inaccuracies in 
measurements. 

Ac
ce

le
ra

tio
n 

(g
)

-10 

-5 

0 

5 

12

0 500 m 1 1.5 2 2.5 3 3.5 4 
Time (s)

Ac
ce

le
ra

tio
n 

(g
)

-40 u

-20 u

0 

20 u

40 u

60 u

12

 

     
    

  
  

  
      
      

  
      
      

  

 

     
    

  
  

  
      
      

  
      
      

  

0 2 k 4 k 6 k 8 k 10 k
Frequency (Hz)

Ac
ce

le
ra

tio
n 

(g
)

1 u

2 u

3 u

4 u

5 u

6 u

7 u

8 u

12
 

    
 

  

  

  

  

   

  
  

  
  

  
  

 

    
 

  

  

  

  

   

  
  

  
  

  
  



 

RJAV vol 21 issue 1/2024                                           10                                                         ISSN 1584-7284 

The research acknowledges that engineering 
structures subjected to varying loads often exhibit 
structural nonlinearity. While linear analysis can be 
somewhat applicable to nonlinear systems, it is 
crucial to consider nonlinearity while studying bolted 
joint constructions due to their unique behaviour. 
This work presents a mathematical methodology for 
identifying the parameters of non-linear structural 
elements. Non-linear parameters can be estimated by 
researchers using inverse analysis, which involves 
deriving the frequency equation from this approach. 
Due to the nonlinearity of the joint behaviour, this 
representation more accurately reflects the response 
of the system. However, current study exhibits 
restraint over a number of unknown non linear joint 
parameter which may results in complexities in 
mathematical modeling.  

The further study also have a scope in applying 
damper system. The existing model can be enhanced 
by include damping characteristics of the joint. 
Subsequently, an appropriate approach can be 
proposed to solve the resulting complex frequency 
equation. 
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