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Abstract: - A manufacturing fault causes a defect consisting of a crack in the structure. Identification and 
classification are essential challenges in scientific research because cracks can lead to catastrophic system 
failure. Structural fitness tracking aims to diagnose and predict structural fitness. A complete crack detection 
method based on free vibration is widely used to find potential cracks in systems. However, bending 
stiffness methods are limited in predicting the crack parameters. Therefore, the bending stiffness approach 
has been used in the present work to determine the crack locations and depth in the cantilever beam. A dead 
weight was attached to the beam's free end, and two dial gauges were used. A gauge was attached to the 
free end of the beam to measure the free-end deflection. Another dial indicator was installed near the crack 
to measure the static deflection at the crack. Numerical and experimental analyses were performed on 25 
cracked specimens to measure the static deflection and stiffness at two points. Regression models were 
developed for the crack parameters to predict them without the need for numerical and experimental 
analyses. Also, the ANN model was developed for the same purpose to relate the considered input and 
output variables. The crack depth and location results obtained from the regression and machine learning 
models are consistent with the actual values. The crack parameters were predicted using static two-point 
bending stiffness values as input, and the results were encouraging. Therefore, the static two-point bending 
stiffness approach may be widely used to detect future cracks in more complex structures. 
 
Keywords: - Bending stiffness, Static deflection, ANN, Regression models, Dial gauges, ANSYS. 

 
 
1. INTRODUCTION 

The presence of a crack affects the mode shapes, 
natural frequencies, static deflection, and damping 
coefficient in beam-like structures. For a few decades, 
non-destructive methods for locating cracks in 
structures have relied on alterations in the physical 

properties. Using deflection measurements, Naik [1] 
developed a technique for checking the defects in 
lengthy pipelines. The stiffness of a spinning spring 
model closely mirrored the crack was calculated 
using fracture mechanics. The long pipes not only 
supported boundary conditions, but they also had 
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cantilevers. Experiments using steel and aluminium 
pipes demonstrated the potency of the suggested 
strategy. Theoretical and experimental crack site 
predictions were in good agreement. The efficiency 
of a static deflection technique for inclined edge 
fracture diagnostics in a prismatic cantilever beam 
was demonstrated by Pansare and Naik [2]. 
Rotational springs were used to show how the 
inclined edge fracture made the beams flexible. They 
employed twenty-one mild steel specimens for the 
experimental studies. The experimental static 
deflection results provided precise fracture site 
estimates. Using the measurements of the damage-
induced fluctuations in the static deflection of the 
beam under a specific loading condition, Caddemi 
and Morassi [3] had located the numerous open 
cracks in a beam. A comparable linear spring 
connecting the two neighboring beam segments 
simulated each break. In their research work, many 
open cracks in a beam were found using 
measurements of differences in the static deflection 
of the beam caused by damage under specific load 
conditions. Each break was simulated by a similar 
linear spring connecting the two adjacent beam 
segments. The pertinent requirements on the static 
measurements were presented and addressed for non-
uniform beams with particular ideal boundary 
conditions, enabling the precise detection of the 
damage. The inverse analysis provided accurate 
closed-form representations of the position and 
severity of the fractures in terms of the observed data. 
It was based on an explicit description of the crack-
induced change in the deflection of the beam under a 
particular load distribution. Comparative static 
testing on a steel beam with localized flaws supported 
the theoretical conclusions.  

Tufisi et al. [4] calculated the damage severity for 
the closed and open transverse fractures in beam-like 
structures using deflection under the weight of the 
undamaged and damaged beams. They validated the 
results by comparing the damage severity assessed 
using the stochastic hill climbing (SHC) approach 
with the severities indicated by the expert simulation 
tool. Kumar and Singh [5] looked at border distortion 
about wavelet scale and measurement resolution. The 
appropriate wavelet scale was selected based on the 
fracture localization and wavelet coefficient 
smoothness. Isomorphism was used to show how 
measurement resolution affects signal extension. The 
photographic approach was used to achieve the high-
resolution measurement of the beam deflection. 
Panasare et al. [6] looked at the cracked cantilever 
beam for the static analysis. The researchers used the 
ANSYS Mechanical 16 simulation to investigate the 
cracked cantilever beam for static deflection. The 
static deflections that were obtained and those that 

were measured were compared. Furthermore, 
results were obtained from the generated reliable 
FEA model. Tufisi et al. [7] had suggested an 
analytical data creation method. This information is 
required to train the random forest model (RF), which 
monitors the structural health of the structures. The 
RF model was trained using normalized natural 
frequencies from multiple damaged samples. It was 
discovered that the RF model predicts how the 
structure will behave when cracks are still visible 
towards the cantilevered end. Ostachowicz [8] 
presented the method of analysis of the effect of two 
open cracks upon the frequencies of the natural 
flexural vibrations in a cantilever beam. Two types of 
cracks were considered: double-sided, occurring in 
the case of cyclic loadings, and single-sided, which is 
the principle that occurs as a result of fluctuating 
loadings. Cawley and Adams [9] described the 
method of non-destructively assessing the integrity of 
structures using measurements of the structural 
natural frequencies. It is shown how measurements 
made at a single point in the structure can be used to 
detect, locate, and quantify damage. Rizos et al. [10] 
studied the flexural vibrations of a cantilever beam 
with a rectangular cross-section having a transverse 
surface crack extending uniformly along the width of 
the beam. From the measured amplitudes at two 
points of the structure vibrating at one of its natural 
modes, the respective vibration frequency, and an 
analytical solution of the dynamic response, the crack 
location can be found, and depth can be 
estimated with satisfactory accuracy. Liang et al. [11] 
proposed a method that has practical applications in 
the detection of crack location and quantification of 
damage magnitude in a uniform beam. Their 
approach, which uses rotational massless springs in 
the beam element as a mechanical model, can be 
applied to structures under simply supported or 
cantilever boundary conditions. Khatir et al. [12] 
present a methodology based on non-destructive 
detection, localization, and quantification of multiple 
damages in simple and continuous beams and a more 
complex structure, namely a two-dimensional frame 
structure. The proposed methodology makes use of 
the Firefly Algorithm and Genetic Algorithm as 
optimization tools and the Coordinate Modal 
Assurance Criterion as an objective function. The 
results show that the proposed combination of the 
Coordinate Modal Assurance Criterion and Firefly 
Algorithm or Genetic Algorithm can be easily 
used to identify multiple local structural damages in 
complex structures. Sutar et al. [13] investigated the 
transverse crack in a cantilever beam by developing a 
Neural network-based controller. The input 
parameters to the controller are the relative 
divergence of the first three natural frequencies, and 
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the output parameters are relative crack depth and 
relative crack location in dimensionless forms. 

Random forest (RF) and artificial neural network 
(ANN) were recommended by Gillich et al. [14] as 
two machine learning techniques that might be 
used as search tools in their study. Their databases 
offer damage scenarios for a prismatic cantilever 
beam with a single crack and favorable and 
unfavorable border circumstances. Two steps were 
taken to detect the crack. A rough damage location 
was first determined using networks trained for 
scenarios involving the entire beam. A specialized 
network trained for the beam area where the break 
had previously been found was used to evaluate that. 
For both lab testing and simulations, they could 
precisely identify the crack site and severity using the 
two machine learning techniques. The errors were 
less than 0.6% about the positioning of the crack, 
which was the practitioners' primary objective. Due 
to these accomplishments, they concluded that the 
suggested damage assessment in conjunction with the 
machine learning methodology is sound and 
dependable. The two machine learning algorithms 
could detect the crack site and severity for lab testing 
and simulations. Tufisi et al. [15] proposed a model 
for detecting transverse cracks in support beams, 
which can be a part of more complex structural 
systems. The structure's relative frequency 
variations were first used to look for damage. The 
required modal parameters were assessed using the 
authors' original method. A multi-stage optimization 
process based on the stiffness loss experienced by the 
affected structure was used to precisely pinpoint the 
locations of possible cracks. The study's conclusions 
showed how the suggested model can assess the 
damage in beam-like structures, including its 
presence and location. Based on the investigation's 
findings, Tufisi et al. [16] developed an analytical 
method for gathering the information necessary to 
train a Random Forest model (RF) to carry out the 
SHM task of locating and assessing the severity of 
transverse fractures in beam-like structures. The 
relative frequency shifts (RFS) for various damage 
scenarios were determined using the novel 
methodology, and the generated data was used to 
train the RF model. The results showed that the RF 
model can discover the defect and determine the 
precise location and depth of the transverse cracks if 
the transverse fracture is situated where the beam is 
subject to the most incredible bending stress. A 
massless rotational spring of finite length could be 
positioned there to imitate a crack [17]. The findings 
demonstrated that by combining the suggested 
Coordinate Modal Assurance Criteria with a Firefly 
Algorithm or Genetic Algorithm, various local 
structural problems in complex buildings can be 

swiftly found. Because visual inspection of fractures 
and flaws is worthless and frequently not worth 
considering, non-destructive testing (NDT) 
techniques like thermography, ultrasonic testing, X-
ray diffraction, etc., are used to forecast damage to 
structures. These techniques, however, cost time and 
money. As a result, it is advised that workable 
alternatives be created.  The paper is 
organized considering the various sections, i.e., 
theoretical analysis, finite element modeling and 
analysis, experimental analysis, database generations, 
regression modeling, artificial neural network 
modeling and analysis, results and discussions, and 
conclusions, after the introduction section. 

From the literature review, it was found that there 
is a vast research scope in the field of the detection of 
cracks in beams. For crack detection, the 
conventional techniques focus mainly on using 
natural frequencies and mode shapes. From the 
literature survey, the authors did not find a single 
paper in which two-point bending stiffness was 
used as one of the ways for crack 
detection. This motivated the authors to do crack 
detection in a cantilever beam using bending stiffness 
as a primary criterion. Hence, this paper attempts to 
use the two-point bending stiffness as a primary 
criterion to predict the crack depth and locations in a 
cantilever beam. The predicted crack parameters 
using the Regression and ANN models were validated 
against the experimental results and found promising. 
These good agreements with the results showed the 
effectiveness of the two-point bending stiffness 
approach. 
 
1.1. Material and geometric properties of the 
beam 

 
The material properties and geometric properties 

of the steel cantilever beams are given in this sub-
section. 

Material properties: density (ρ) = 7810 kg/m3, 
Young’s modulus (E) =2.17101 x 1011 N/m2, 
Poisson’s ratio (µ) = 0.3 

Geometric properties: The length of the beam 
(L) and cross-sectional area are 0.4m and                            
0.016 × 0.016 m2, respectively; ‘I’ is the moment of 
inertia of the beam. 
 
1.2. Design of experiments and crack 
configurations 

 
Scientists and engineers can utilize the design of 

experiments (DOE) method to conduct systematic 
and efficient investigations into the link between 
many input parameters and response (output) 
variables. This research study considers major 



 

RJAV vol 21 issue 1/2024                                           73                                                         ISSN 1584-7284 

influencing input parameters at five levels, i.e., crack 
location and depth. It means that 60 mm, 120 mm, 
180 mm, 240 mm, and 300 mm crack locations 
have been considered. Moreover, at each location, 
crack depths varied from 2 mm to 10 mm at an 
interval of 2 mm. Based on the Taguchi technique, the 
L25 orthogonal array has been formed for the input 
parameters ranges, and the combination of the various 
parameters corresponding to the twenty-five 
experimental runs is presented in Table 1. Table 1 
also presents various cracked cases' numerical and 
experimental bending stiffness. The two stiffness 
values (K1 and K2) were considered dependent 
variables. The global stiffness (K1) and stiffness at the 
crack (K2) were considered in a cracked cantilevered 
beam. The crack location and depth (L1 and a) were 
considered independent variables.  

 
2. THEORETICAL ANALYSIS 

 
A schematic of a cracked cantilevered beam is 

shown in Figure 1. Furthermore, a cracked cantilever 
beam is represented by two complete beam segments 
joined by a torsional spring when the force is ignored, 
as shown in Figure 2. Dimarogonas et al. [23] derived 
the torsional stiffness (KT) equation that characterizes 
the crack. The torsional stiffness of the fragmented 
beam is represented in equation (1). 

 

 
Figure 1. A cracked cantilever beam carries a point load 

at the free end 
 

𝑲𝑲𝑻𝑻 = 𝑬𝑬𝑬𝑬𝒕𝒕𝟐𝟐

𝟕𝟕𝟕𝟕𝟕𝟕(𝑳𝑳−𝑳𝑳𝟏𝟏)𝟐𝟐 (𝟏𝟏−µ𝟐𝟐)Ф
                         (1) 

where, B and t are the width and thickness of the 
beam respectively.  

L1 and L are the crack's distance from the fixed end 
and the beam's length, respectively. 

P1 is the dead load applied at the free end. 
The function Ф is given by 
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where, a is the crack's depth. 

The open-edged cracked beam stiffness (K1) or 
global stiffness can be computed by 

𝐾𝐾1 = 𝐾𝐾𝑇𝑇𝐾𝐾𝐼𝐼
𝐾𝐾𝑇𝑇+𝐾𝐾𝐼𝐼

                               (3) 

The stiffness of an intact (KI) or un-cracked 
cantilever beam is computed using equation (4), 

𝐾𝐾𝐼𝐼 = 3𝐸𝐸𝐸𝐸
𝐿𝐿3

                                  (4) 

The theoretical stiffness of an open-edged cracked 
beam is presented in the Table 3. 
 

 
Figure 2. A cracked cantilever beam stiffness model 

 
3. FINITE ELEMENT MODELING AND 

ANALYSIS 
 

The beam with an assumed open crack was 
simulated using the ANSYS 12.1 finite element 
program. The block command was used to help build 
volumes with the necessary dimensions. Similar to 
this, the main volume of the model was modified to 
generate a triangular-shaped volume where it was 
needed. The required three-dimensional crack 
model was then generated by deducting the triangular 
volume from the main volume. Solid 186 elements 
[19-20] from the ANSYS element library were 
used to mesh the model. At the left end of the beam, 
there was no room for rotation or movement [24]. 
Cantilevered boundary conditions [21] were 
consequently employed. A static point load of 50 N 
was applied to the beam's free end to cause elastic 
deformation in the bending mode. The deflections at 
the crack and the free end of the cantilever beam are 
shown in Figure 3. 

 
Figure 3. The two-point static deflection of a cracked 

cantilever beam 
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4. EXPERIMENTAL ANALYSIS 
 

Two-point static deflection measurements were 
used to find the cracks in cantilever beams. A 
50 N dead load was applied at the beam's free end to 
get the elastic deformation at the free end and the 
crack in the bending mode. The dial gauges were 
used to measure the static displacements at the free 
end and the crack in the beam. Figure 4 displays the 
same device's schematic. A picture of the actual 
experimental setup is found in Figure 5. The 
arrangement comprises a specimen holder, an EN 31 
cracked specimen, and a dead load. Dial indicators 
(Made: Mitutoyo; one micron least count) were 
used with stands. Out of twenty-five cracked cases, 
the deflection at the free end and the crack are given 
for one case, i.e., crack location 60 mm, crack depth 

10 mm, the found experimental deflection at the free 
end (δ1) was 1.382 mm, and the deflection at the crack 
(δ2) was 0.02867 mm. 

 

 
Figure 4. Schematic representation of a two-point static 

deflection measurement 

 

 
Figure 5. Experimental setup 

 
The procedure for measuring the static 

deflections was as follows: This research employed 
the static deflection measurement on the cracked 
cantilever beams at two specific locations. First, one 
dial indicator was positioned at the free end of the 
beam, and another was placed at the crack. Then, a 
load of 50N was applied at the free end of the 
cantilever beam, causing the beam to elastically 
deform in the vertical plane. As a result, the dial 
indicator at the free end provided the free end 
deflection, while the one at the crack gave the 
displacement at the crack of a cantilever beam.  

The global stiffness (K1) and the localized stiffness 
(K2) at the crack were calculated considering the 
crack's static deflections, i.e., δ1 and δ2, respectively. 
Hence, the stiffness values K1 and K2 were used as 

input parameters for damage detection in a cantilever 
beam.  
 
5. DATABASE GENERATIONS 
 

Because of the known crack severity, a database 
consisting of shifts in bending stiffness was 
required to train the inverse algorithm. As analytical 
expression for the vibration of the cracked beam is 
complicated and time-consuming, the required 
database is generated with the help of a numerical and 
experimental analysis. FE simulation and 
experimental analysis were conducted on all the 
beam models with different sizes and crack locations. 
The numerical and experimental datasets of bending 
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stiffness were leveraged to develop the ANN and 
regression models. In this endeavor, a comprehensive 
range of twenty-five different cracking scenarios 
were meticulously considered. The static deflection at 
the free end and the crack were measured and taken 
into account for all the cracked cases. Furthermore, 
the global bending stiffness (K1) and stiffness at the 
crack (K2) were determined using the formula as 

shown in Figure 4. The two-point bending stiffness 
values (K1 and K2) were used as the inputs to the 
ANN and regression models, with the crack location 
and depths (L1 and a) as outputs. The regression 
model demonstrated an excellent polynomial fit to the 
data. The bending stiffness dataset, based on the 
numerical and experimental analysis, is presented in 
Table 1.

 
Table 1. Numerical and experimental stiffness results obtained for the proposed experimental plan 

Sr. 
No. 

Crack 
location, 
L1 (m) 

Crack 
depth, 
a (m) 

Numerical 
stiffness, K1 

(N/m) 

Numerical 
stiffness, 
K2(N/m) 

Experimental 
stiffness, K1 (N/m) 

Experimental 
stiffness, K2 (N/m) 

01 0.060 0.002 55126.79 1766784 55115.85 1767034.21 
02 0.060 0.004 53276.51 1763668 53270.83 1764851.22 
03 0.060 0.006 49825.61 1760563 49850.45 1761245.55 
04 0.060 0.008 44345.9 1757469 44342.36 1758495.29 
05 0.060 0.010 36153.29 1742160 36151.20 1743411.65 
06 0.120 0.002 55309.73 460829.5 55295.60 460519.65 
07 0.120 0.004 53995.68 460676.6 54004.14 460409.40 
08 0.120 0.006 51546.39 460672.4 51564.94 460193.28 
09 0.120 0.008 47438.33 460668.2 47434.28 460006.99 
10 0.120 0.010 40683.48 458715.6 40714.62 459242.25 
11 0.180 0.002 55432.37 215982.7 55447.86 216141.44 
12 0.180 0.004 54644.81 215968.7 54630.54 216132.10 
13 0.180 0.006 53050.4 215959.4 53047.87 216078.86 
14 0.180 0.008 50301.81 215945.4 50306.16 216042.45 
15 0.180 0.010 45330.92 215517.2 45322.29 215912.77 
16 0.240 0.002 55555.56 129032.3 55559.69 129031.26 
17 0.240 0.004 55126.79 129027.3 55123.02 129024.93 
18 0.240 0.006 54259.36 129025.6 54253.35 129018.27 
19 0.240 0.008 52687.04 129022.3 52685.43 129010.28 
20 0.240 0.010 49701.79 128866 49692.40 128964.36 
21 0.300 0.002 55617.35 88028.17 55633.01 88032.82 
22 0.300 0.004 55463.12 88026.62 55465.02 88031.11 
23 0.300 0.006 55126.79 88025.07 55115.37 88030.49 
24 0.300 0.008 54495.91 88021.97 54481.31 88027.08 
25 0.300 0.010 53219.8 87950.75 53206.38 88012.98 
 

6. REGRESSION MODELING 
 
A regression analysis was made using Design 

Expert 13.0 software to obtain the functional 
relationship between the independent and dependent 
variables of the proposed study in the form of 
algebraic equations. This research study proposes a 
correlation model between the bending stiffness and 
crack parameters, i.e., crack location and depth, as a 
forward approach. It is given in equation (5). 

𝐾𝐾 = 𝑓𝑓(𝐿𝐿1,𝑎𝑎)                                   (5) 

‘K’ is the bending stiffness of the cracked beam  
‘L1’ is the distance of the crack from the cantilevered 
end  
‘a’ is the crack depth of the beam.   

𝑓𝑓(𝐿𝐿1, 𝑎𝑎) − 𝐾𝐾 = 0                               (6) 

When global bending stiffness was considered, the 
equation (6) will be as follows 

𝑓𝑓(𝐿𝐿1, 𝑎𝑎) − 𝐾𝐾1 = 0                              (7) 

Similarly, when the bending stiffness at the crack 
was considered, the equations (6) will be as follows. 

𝑓𝑓(𝐿𝐿1, 𝑎𝑎) − 𝐾𝐾2 = 0                              (8) 

An inverse approach to crack detection is 
proposed in this work K1 and K2 are the stiffness 
plotted against the crack parameters, i.e., crack 
location and depth. The global stiffness (K1) and 
stiffness (K2) at the crack were used to obtain the 
correlation model for the curve fitting.  

Only two equations were required to find two 
unknown crack parameters, i.e., crack location and 
depth. Based on the non-linear relationship between 
crack parameters and stiffness, a non-linear 



 

RJAV vol 21 issue 1/2024                                           76                                                         ISSN 1584-7284 

polynomial curve fitting was used for two equations 
considering the ‘K1’ and ‘K2’ stiffness. Equations (9) 
and (10) were developed using the numerical data set. 
Similarly, equations (11) and (12) were developed 
using the experimental data set. The numerical and 
experimental data set of bending stiffness values are 
presented in Table 3. The regression models 

developed using the numerical bending stiffness 
values are given in Equation (9) and Equation (10), 
respectively. Similarly, the regression models 
developed using the experimental bending stiffness 
values are given in Equation (11) and Eq. (12), 
respectively. 

 

56029.93658 − 7604.66446𝐿𝐿1 − 1.30970 ∗ 105 ∗ 𝑎𝑎 − 2.14347 ∗ 105 ∗ 𝐿𝐿1 ∗ 𝑎𝑎 + 66558.42752 ∗ 𝐿𝐿12 −
1.2226 ∗ 108 ∗ 𝑎𝑎2 − 6.18143 ∗ 106 ∗ 𝐿𝐿12 ∗ 𝑎𝑎 + 9.24786 ∗ 108 ∗ 𝐿𝐿1 ∗ 𝑎𝑎2 − 1.17203 ∗ 105 ∗ 𝐿𝐿13 −

                                                                 1.14098 ∗ 1010 ∗ 𝑎𝑎3 − 𝐾𝐾1 = 0                                                          (9) 
 

4.40077 ∗ 106 − 5.84578 ∗ 107 ∗ 𝐿𝐿1 − 3.24169 ∗ 106 ∗ 𝑎𝑎 + 2.83346 ∗ 107 ∗ 𝐿𝐿1 ∗ 𝑎𝑎 + 2.63499 ∗ 108 ∗
𝐿𝐿12 + 1.69736 ∗ 108 ∗ 𝑎𝑎2 − 1.03804 ∗ 108 ∗ 𝐿𝐿12 ∗ 𝑎𝑎 + 1.54853 ∗ 109 ∗ 𝐿𝐿1 ∗ 𝑎𝑎2 − 3.88659 ∗ 108 ∗ 𝐿𝐿13 −

                                                                3.07722 ∗ 1010 ∗ 𝑎𝑎3 − 𝐾𝐾2 = 0                                                         (10) 
 

55963.58886 − 6872.21815 𝐿𝐿1 − 1.15018 ∗ 105 ∗ 𝑎𝑎 − 2.82909 ∗ 105 ∗ 𝐿𝐿1 ∗ 𝑎𝑎 + 63276.96214 ∗ 𝐿𝐿12 −
1.23464 ∗ 108 ∗ 𝑎𝑎2 − 6.28421 ∗ 106 ∗ 𝐿𝐿12 ∗ 𝑎𝑎 + 9.31555 ∗ 108 ∗ 𝐿𝐿1 ∗ 𝑎𝑎2 − 1.10358 ∗ 105 ∗ 𝐿𝐿13 −

                                                      1.14106 ∗ 1010 ∗ 𝑎𝑎3 − 𝐾𝐾1 = 0                                                                   (11) 
 

4.40287 ∗ 106 − 5.85148 ∗ 107 ∗ 𝐿𝐿1 − 2.63821 ∗ 106 ∗ 𝑎𝑎 + 2.77512 ∗ 107 ∗ 𝐿𝐿1 ∗ 𝑎𝑎 + 2.63824 ∗ 108 ∗
𝐿𝐿12 + 6.23266 ∗ 107 ∗ 𝑎𝑎2 − 1.02272 ∗ 108 ∗ 𝐿𝐿12 ∗ 𝑎𝑎 + 1.51891 ∗ 109 ∗ 𝐿𝐿1 ∗ 𝑎𝑎2 − 3.89217 ∗ 108 ∗ 𝐿𝐿13 −
                                                                 2.39209 ∗ 1010 ∗ 𝑎𝑎3 − 𝐾𝐾2 = 0                                                        (12) 

 

To determine the locations and depths of cracks in 
a cantilever beam, equation (9) and equation (10) 
were used. The numerical bending stiffness (K1) and 
stiffness at the crack were used (K2) and were 
substituted with equation (9) and equation (10), 
respectively, to predict the crack depth and the 
locations in a cracked beam using a numerical data 
set. Then, equations (9) and (10) were solved 
simultaneously using a Microsoft Excel solver to 
predict the crack location and depth in a cantilever 
beam. Similarly, to determine the locations and 
depths of cracks in a cantilever beam, equation (11) 
and equation (12) were used. The experimental 
bending stiffness (K1) and stiffness at the crack were 
used (K2) and were substituted in equation (11) and 
equation (12), respectively. Microsoft Excel solver 
was used to solve the simultaneous equations, i.e., 
equations (11) and (12).  

In order to predict the crack characteristics of a 
cracked cantilever beam, equations (9), (10), (11), 
and (12) were applied. Regression analysis and 
Design Expert software were used to generate the 
third-order correlation models shown in equations 
(9), (10), (11), and (12). Correlation model 
reliability is commonly assessed using R-squared 
values. If the R-squared value is close to 1, then the 
data and derived correlation models suit the data well. 
The built-in correlation models described in 
equations (9), (10), (11), and (12) were found to have 
R-squared values of 0.9997, 0.9955, 0.9999, and 
0.9953 respectively in the current experiment. The 
reliability of the created correlation models is 
shown by the R-squared values, which are close to 1. 

Using the numerical data set, equations (9) and (10) 
forecast the positions and sizes of cracks in a 
cantilever beam. Using the experimental data set, 
equations (10) and (11) also estimate the location and 
depth of the cracks that will appear in a cantilever 
beam. 

 
7. ARTIFICIAL NEURAL NETWORK 

MODELING AND ANALYSIS 
 
The depth and location of cracks in a beam are 

evaluated and predicted using artificial neural 
networking (ANN). The analytical work's findings 
are consistent with what was learned during training 
[18, 22]. The "nntool" tool uses the intended inputs 
and outputs, or targets, imported into the MATLAB 
workspace. A neural network's structure is depicted 
in Figure 6. In this case, a typical three-layered Feed 
Forward Back Propagation (FFBP) neural network 
comprises three input neurons, nine hidden neurons, 
and two output neurons (Figure 6). Table 2 contains a 
list of an artificial neural network's hyperparameters. 
Figure 7 depicts the feed-forward, backward-
propagation neural network. While the fracture 
position and depth were considered output 
parameters, the bending stiffness at the free end and 
the crack were considered an input parameter. 
Levenberg Marquardt serves as the training function, 
while MSE, LEARNGDM, and tansig serve as the 
performance, adaptive learning, and transfer, 
respectively. Figures 8 and 9 display the regression 
plot for training, validation, and testing. The 
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experimental and numerical datasets were used to 
produce the regression curve that can be seen in 
Figures 8 and 9. It displays how well the actual results 
match the projected statistics. 

 

 
Figure 6. Architecture of ANN 

 

Table 2. Hyper-parameter of Artificial Neural Network 

Sr. No. Input parameters for 
training 

Values 

01 Learning rate 0.1 
02 Number of epochs 1000 
03 Number of nodes in input layer 02 
04 Number of neurons in the 

hidden layer 
9 

06 Number of nodes in output 
layer 

02 

07 Goal Zero 
 

 
Figure 7. Feed forward back propagation neural network 
 

 

 
Figure 8. Regression plot based on numerical data set 
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Figure 9. Regression plot based on experimental data set 

 

 
 
8. RESULTS AND DISCUSSION 
 

In order to check the correctness of the approach 
to the numerical modeling and experimental analysis, 
the bending stiffness of cracked cases of beams was 
determined using the theoretical method. The global 
bending stiffness (K1) calculated using the various 
methods is in good agreement and is presented in 
Table 3. This study investigates the bending stiffness 
of a cracked cantilever beam with different crack 
depths and locations experimentally and numerically. 

Figures 10 and 11 show a significant relationship 
between the independent variables (crack location 
and crack depth) and the dependent variables 
(bending stiffness). Furthermore, Figure 10 shows 
that the global bending stiffness decreases as crack 
depth increases at any unique location in the beam. 
As the depth of the crack increases, strength is 

reduced. Figure 11 shows that at constant crack depth, 
the beam's global bending stiffness increases as the 
crack's distance increases from the cantilevered end. 
The crack nearer to the fixed end of the beam reduces 
the beam stiffness significantly compared to the crack 
at the free end of the cantilever beam. As a result, as 
the fracture moves further from the fixed end of the 
beam, the global bending stiffness increases. Thus, it 
is shown that the depth and location of the crack affect 
the bending stiffness. The two-point bending stiffness 
(global stiffness and stiffness at the crack) was a vital 
component of this experiment for identifying the 
cantilever beam's fracture characteristics. The 
creation of regression and ANN models was also 
made possible by the utilization of experimental and 
numerical datasets. The positions and depths of 
cracks have been predicted using the regression and 
ANN models, and the anticipated values are 
contrasted with the actual fracture features. Tables 4 
to 7 present the findings about the same. 
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Figure 10. Variation in bending stiffness with respect to 

crack depth; 60 mm crack location from the       
cantilevered end 

 
Figure 11. Variation in bending stiffness with respect to 

crack location at constant crack depth 

 
Table 3. Cantilever beam global bending stiffness (K1) 

 
Table 4. Prediction of crack location using the regression and ANN model based on numerical data set 

Sr. 
No. 

K1 (N/m) K2 (N/m) L1/L 
(Actual) 

L1/L 
(Regression) 

% Error L1/L 
(ANN) 

% Error 

01 51786.64 1762115 0.06 0.05947 0.88 0.06 0.00 
02 47370.91 1758706 0.06 0.05945 0.92 0.06 0.00 
03 54794.52 460678.8 0.120 0.1227 -2.25 0.1208 -0.67 
04 52966.1 460674.5 0.120 0.1227 -2.25 0.1171 2.42 
05 51894.14 215954.7 0.180 0.1525 15.28 0.1745 3.06 
06 48239.27 215940.7 0.180 0.1523 15.39 0.2074 -15.22 
07 54265.54 178486 0.200 0.161 19.50 0.1782 10.90 
08 51188.49 178433.1 0.200 0.161 19.50 0.1746 12.70 
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Sr. 
No. 

Crack 
location, 
L1 (m) 

Crack 
depth, 
a (m) 

Stiffness K1 

(N/m) 
Theoretical 
method 

Stiffness K1 

(N/m) 
Numerical 
method 

Stiffness K1 

(N/m) 
Experimental 
method 

% error 
(Theoretical 
and 
numerical) 

% error 
(Theoretical 
and 
experimental) 

01 0.060 0.002 54871.65 55126.79 55115.85 0.4628 0.4431 
02 0.060 0.004 52851.59 53276.51 53270.83 0.7976 0.7870 
03 0.060 0.006 49290.35 49825.61 49850.45 1.0743 1.1236 
04 0.060 0.008 43586.39 44345.9 44342.36 1.7127 1.7048 
05 0.060 0.010 34754.42 36153.29 36151.20 3.8693 3.8637 
06 0.120 0.002 55102.17 55309.73 55295.60 0.3753 0.3498 
07 0.120 0.004 53704.52 53995.68 54004.14 0.5392 0.5548 
08 0.120 0.006 51157.61 51546.39 51564.94 0.7542 0.7899 
09 0.120 0.008 46842.91 47438.33 47434.28 1.2551 1.2467 
10 0.120 0.010 39522.56 40683.48 40714.62 2.8536 2.9279 
11 0.180 0.002 55290.45 55432.37 55447.86 0.2560 0.2839 
12 0.180 0.004 54413.60 54644.81 54630.54 0.4231 0.3971 
13 0.180 0.006 52770.64 53050.4 53047.87 0.5273 0.5226 
14 0.180 0.008 49847.10 50301.81 50306.16 0.9040 0.9125 
15 0.180 0.010 44440.00 45330.92 45322.29 1.9654 1.9467 
16 0.240 0.002 55435.59 55555.56 55559.69 0.2159 0.2234 
17 0.240 0.004 54966.33 55126.79 55123.02 0.2911 0.2843 
18 0.240 0.006 54067.38 54259.36 54253.35 0.3538 0.3428 
19 0.240 0.008 52402.26 52687.04 52685.43 0.5405 0.5375 
20 0.240 0.010 49082.05 49701.79 49692.40 1.2469 1.2283 
21 0.300 0.002 55536.92 55617.35 55633.01 0.1446 0.1727 
22 0.300 0.004 55352.59 55463.12 55465.02 0.1993 0.2027 
23 0.300 0.006 54993.52 55126.79 55115.37 0.2418 0.2211 
24 0.300 0.008 54308.46 54495.91 54481.31 0.3440 0.3173 
25 0.300 0.010 52861.39 53219.8 53206.38 0.6734 0.6484 
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Table 5. Prediction of crack location using the regression and ANN model based on experimental data set 

Sr. 
No. 

K1 (N/m) K2 (N/m) L1/L 
(Actual) 

L1/L 
(Regression) 

% Error L1/L 
(ANN) 

% Error 

01 51772.27 1764309 0.06 0.05959 0.69 0.06 0.00 
02 47307.27 1762158 0.06 0.05953 0.79 0.06 0.00 
03 54787.5 460456 0.120 0.124 -3.23 0.121 -0.83 
04 52965.26 460566.3 0.120 0.124 -3.23 0.117 2.50 
05 51874.65 216052.7 0.180 0.157 14.65 0.1745 3.06 
06 48233.68 215982.7 0.180 0.1564 15.09 0.179 0.56 
07 54269.55 178484.1 0.200 0.167 19.76 0.1781 10.95 
08 51188.49 178433.1 0.200 0.167 19.76 0.1746 12.70 

 
 

Table 6. Prediction of crack depth using the regression and ANN model based on numerical data set 

Sr. 
No. 

K1 (N/m) K2 (N/m) a/t 
(Actual)  

a/t  
(Regression)  

% Error a/t (ANN) % Error 

01 51786.64 1762115 0.005 0.005044 -0.88 0.0049 2.00 
02 47370.91 1758706 0.007 0.007023 -0.33 0.0072 -2.86 
03 54794.52 460678.8 0.003 0.002922 2.60 0.0028 6.67 
04 52966.1 460674.5 0.005 0.005024 -0.48 0.0039 22.00 
05 51894.14 215954.7 0.007 0.0064 8.57 0.009 -28.57 
06 48239.27 215940.7 0.009 0.0083 7.78 0.01 -11.11 
07 54265.54 178486 0.005 0.00424 15.20 0.0043 14.00 
08 51188.49 178433.1 0.008 0.00698 12.75 0.0099 -23.75 

 
 

Table 7. Prediction of crack depth using the regression and ANN model based on experimental data set 

Sr. 
No. 

K1 (N/m) K2 (N/m) a/t 
(Actual)  

a/t              
(Regression)  

% Error a/t (ANN) % Error 

01 51772.27 1764309 0.005 0.005051 -1.02 0.0049 2.00 
02 47307.27 1762158 0.007 0.007044 -0.63 0.0071 -1.43 
03 54787.5 460456 0.003 0.00295 1.67 0.0028 6.67 
04 52965.26 460566.3 0.005 0.005043 -0.86 0.0039 22.00 
05 51874.65 216052.7 0.007 0.00645 7.86 0.009 -28.57 
06 48233.68 215982.7 0.009 0.00839 6.78 0.0099 -10.00 
07 54269.55 178484.1 0.005 0.0044 12.00 0.0043 14.00 
08 51188.49 178433.1 0.008 0.0072 10.00 0.0099 -23.75 

 

 
Figure 12. Predicted crack locations using ANN and 

regression model at different crack depth ratio based on a 
numerical dataset 

 
Figure 13. Predicted crack locations using ANN and 

regression model at different crack depth ratio based on 
an experimental dataset 
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Figure 14. Predicted crack depth using ANN, and 

regression models at different crack location ratios based 
on a numerical data set 

 

 
Figure 15. Predicted crack depth using ANN, and 

regression models at different crack location ratios based 
on an experimental data set 

 
Figures 12 and 13 show the actual and predicted 

crack locations using the numerical dataset and 
experimental data set. Similarly, Figures 14 and 15 
show the actual and predicted crack depths using the 
numerical dataset and experimental data set. From 
Figs. 12 to 15, it is clear that the regression and ANN 
models give good predictions for the crack depths and 
locations in cantilever beams. Based on the numerical 
dataset, it is found that the regression and ANN 
models give average errors of 9.386 and 5.621 to 
predict the crack locations, respectively. Similarly, 
based on the experimental data set, it is found that the 
regression and ANN models give average errors of 
9.65 and 3.825 to predict the crack locations, 
respectively. Based on the experimental dataset, it is 
found that the regression and ANN models give 
average errors of 6.07 and 13.87 to predict the crack 
depths, respectively. Similarly, based on the 
experimental dataset, it is found that the regression 

and ANN models give average errors of 5.102 and 
13.55 to predict the crack depths, respectively. Hence, 
it is clear that the two-point bending stiffness 
approach (inverse method) leads to good predictions 
regarding the crack parameters in a cantilever 
beam. The regression model results based on the 
numerical dataset showed that the mean square error 
for the crack location (L1) and crack depth (a) were 
0.0005725 and 0.00000030964, respectively. Based 
on the ANN model results from the numerical dataset, 
the mean square error for the crack location (L1) and 
crack depth (a) were 0.0002388 and 0.0000013, 
respectively. The regression model results based on 
the experimental dataset showed that the mean square 
error for the crack location (L1) and crack depth (a) 
were 0.00041204 and 0.0000002104, respectively. 
Based on the ANN model results from the 
experimental dataset, the mean square error for the 
crack location (L1) and crack depth (a) were 
0.0001457 and 0.0000012725, respectively. The 
regression model gives comparatively better 
predictions for the crack depths than the ANN model. 
On the other hand, the ANN model gives better 
predictions for predicting the crack locations than the 
regression models. 
 
9.  CONCLUSIONS 

 
The proposed study uses a Two-point bending 

stiffness approach to predict the crack depth and 
location in the cantilever beam. It was observed that 
the presence of transverse cracks changes the bending 
stiffness of the beams. Two-point bending stiffness 
values were used as inputs for the regression and the 
ANN models. Crack location and depth were 
considered to be the output responses. The 
concluding remarks are drawn herewith: 
• The two-point bending stiffness approach 

gives good results for predicting the crack 
depth and the crack location in a cantilever 
beam (inverse crack detection problem).  

• The theoretical, experimental, and numerical 
results for the bending stiffness are 
encouraging and valid. The maximum 
percentage error for the global bending 
stiffness between theoretical and numerical 
methods is 3.8693. Similarly, the maximum 
percentage error for the global bending 
stiffness between the theoretical and 
experimental methods is 3.8637  

• Regression and ANN models based on the 
numerical and experimental data sets give 
good results in predicting the crack 
parameters, i.e., crack depth and locations. 

• The regression and ANN model results show 
that the two-point bending stiffness method is 
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a viable, non-destructive method for crack 
detection in structures, i.e., the cantilever 
beam. 

• Based on the estimation of mean square errors, 
the regression model gives comparatively 
better predictions for the crack depths than the 
ANN model. On the other hand, the ANN 
model gives better results for predicting the 
crack locations than the regression models.  

• The cracked beam's global bending stiffness 
increases as the crack's distance increases from 
the cantilevered end to the free end. 

• The global bending stiffness decreases as the 
depth of the crack increases at a constant crack 
location. 
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