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Abstract: - A manufacturing fault causes a defect consisting of a crack in the structure. Identification and
classification are essential challenges in scientific research because cracks can lead to catastrophic system
failure. Structural fitness tracking aims to diagnose and predict structural fitness. A complete crack detection
method based on free vibration is widely used to find potential cracks in systems. However, bending
stiffness methods are limited in predicting the crack parameters. Therefore, the bending stiffness approach
has been used in the present work to determine the crack locations and depth in the cantilever beam. A dead
weight was attached to the beam's free end, and two dial gauges were used. A gauge was attached to the
free end of the beam to measure the free-end deflection. Another dial indicator was installed near the crack
to measure the static deflection at the crack. Numerical and experimental analyses were performed on 25
cracked specimens to measure the static deflection and stiffness at two points. Regression models were
developed for the crack parameters to predict them without the need for numerical and experimental
analyses. Also, the ANN model was developed for the same purpose to relate the considered input and
output variables. The crack depth and location results obtained from the regression and machine learning
models are consistent with the actual values. The crack parameters were predicted using static two-point
bending stiffness values as input, and the results were encouraging. Therefore, the static two-point bending
stiffness approach may be widely used to detect future cracks in more complex structures.

Keywords: - Bending stiffness, Static deflection, ANN, Regression models, Dial gauges, ANSYS.

1. INTRODUCTION properties. Using deflection measurements, Naik [1]

The presence of a crack affects the mode shapes, developed a technique for checking the defects in
natural frequencies, static deflection, and damping lengthy pipelines. The stiffness of a spinning spring
coefficient in beam-like structures. For a few decades, model closely mirrored the crack was calculated
non-destructive methods for locating cracks in using fracture mechanics. The long pipes not only
structures have relied on alterations in the physical ~supported boundary conditions, but they also had
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cantilevers. Experiments using steel and aluminium
pipes demonstrated the potency of the suggested
strategy. Theoretical and experimental crack site
predictions were in good agreement. The efficiency
of a static deflection technique for inclined edge
fracture diagnostics in a prismatic cantilever beam
was demonstrated by Pansare and Naik [2].
Rotational springs were used to show how the
inclined edge fracture made the beams flexible. They
employed twenty-one mild steel specimens for the
experimental studies. The experimental static
deflection results provided precise fracture site
estimates. Using the measurements of the damage-
induced fluctuations in the static deflection of the
beam under a specific loading condition, Caddemi
and Morassi [3] had located the numerous open
cracks in a beam. A comparable linear spring
connecting the two neighboring beam segments
simulated each break. In their research work, many
open cracks in a beam were found using
measurements of differences in the static deflection
of the beam caused by damage under specific load
conditions. Each break was simulated by a similar
linear spring connecting the two adjacent beam
segments. The pertinent requirements on the static
measurements were presented and addressed for non-
uniform beams with particular ideal boundary
conditions, enabling the precise detection of the
damage. The inverse analysis provided accurate
closed-form representations of the position and
severity of the fractures in terms of the observed data.
It was based on an explicit description of the crack-
induced change in the deflection of the beam under a
particular load distribution. Comparative static
testing on a steel beam with localized flaws supported
the theoretical conclusions.

Tufisi et al. [4] calculated the damage severity for
the closed and open transverse fractures in beam-like
structures using deflection under the weight of the
undamaged and damaged beams. They validated the
results by comparing the damage severity assessed
using the stochastic hill climbing (SHC) approach
with the severities indicated by the expert simulation
tool. Kumar and Singh [5] looked at border distortion
about wavelet scale and measurement resolution. The
appropriate wavelet scale was selected based on the
fracture localization and wavelet coefficient
smoothness. Isomorphism was used to show how
measurement resolution affects signal extension. The
photographic approach was used to achieve the high-
resolution measurement of the beam deflection.
Panasare et al. [6] looked at the cracked cantilever
beam for the static analysis. The researchers used the
ANSYS Mechanical 16 simulation to investigate the
cracked cantilever beam for static deflection. The
static deflections that were obtained and those that

were measured were compared. Furthermore,
results were obtained from the generated reliable
FEA model. Tufisi et al. [7] had suggested an
analytical data creation method. This information is
required to train the random forest model (RF), which
monitors the structural health of the structures. The
RF model was trained using normalized natural
frequencies from multiple damaged samples. It was
discovered that the RF model predicts how the
structure will behave when cracks are still visible
towards the cantilevered end. Ostachowicz [8]
presented the method of analysis of the effect of two
open cracks upon the frequencies of the natural
flexural vibrations in a cantilever beam. Two types of
cracks were considered: double-sided, occurring in
the case of cyclic loadings, and single-sided, which is
the principle that occurs as a result of fluctuating
loadings. Cawley and Adams [9] described the
method of non-destructively assessing the integrity of
structures using measurements of the structural
natural frequencies. It is shown how measurements
made at a single point in the structure can be used to
detect, locate, and quantify damage. Rizos et al. [10]
studied the flexural vibrations of a cantilever beam
with a rectangular cross-section having a transverse
surface crack extending uniformly along the width of
the beam. From the measured amplitudes at two
points of the structure vibrating at one of its natural
modes, the respective vibration frequency, and an
analytical solution of the dynamic response, the crack
location canbe found, and depth canbe
estimated with satisfactory accuracy. Liang et al. [11]
proposed a method that has practical applications in
the detection of crack location and quantification of
damage magnitude in a uniform beam. Their
approach, which uses rotational massless springs in
the beam element as a mechanical model, can be
applied to structures under simply supported or
cantilever boundary conditions. Khatir et al. [12]
present a methodology based on non-destructive
detection, localization, and quantification of multiple
damages in simple and continuous beams and a more
complex structure, namely a two-dimensional frame
structure. The proposed methodology makes use of
the Firefly Algorithm and Genetic Algorithm as
optimization tools and the Coordinate Modal
Assurance Criterion as an objective function. The
results show that the proposed combination of the
Coordinate Modal Assurance Criterion and Firefly
Algorithm or Genetic Algorithm can be easily
used to identify multiple local structural damages in
complex structures. Sutar et al. [13] investigated the
transverse crack in a cantilever beam by developing a
Neural network-based controller. The input
parameters to the controller are the relative
divergence of the first three natural frequencies, and

RJAV vol 21 issue 1/2024

ISSN 1584-7284



the output parameters are relative crack depth and
relative crack location in dimensionless forms.
Random forest (RF) and artificial neural network
(ANN) were recommended by Gillich et al. [14] as
two machine learning techniques that might be
used as search tools in their study. Their databases
offer damage scenarios for a prismatic cantilever
beam with a single crack and favorable and
unfavorable border circumstances. Two steps were
taken to detect the crack. A rough damage location
was first determined using networks trained for
scenarios involving the entire beam. A specialized
network trained for the beam area where the break
had previously been found was used to evaluate that.
For both lab testing and simulations, they could
precisely identify the crack site and severity using the
two machine learning techniques. The errors were
less than 0.6% about the positioning of the crack,
which was the practitioners' primary objective. Due
to these accomplishments, they concluded that the
suggested damage assessment in conjunction with the
machine learning methodology is sound and
dependable. The two machine learning algorithms
could detect the crack site and severity for lab testing
and simulations. Tufisi et al. [15] proposed a model
for detecting transverse cracks in support beams,
which can be a part of more complex structural
systems. The structure's relative frequency
variations were first used to look for damage. The
required modal parameters were assessed using the
authors' original method. A multi-stage optimization
process based on the stiffness loss experienced by the
affected structure was used to precisely pinpoint the
locations of possible cracks. The study's conclusions
showed how the suggested model can assess the
damage in beam-like structures, including its
presence and location. Based on the investigation's
findings, Tufisi et al. [16] developed an analytical
method for gathering the information necessary to
train a Random Forest model (RF) to carry out the
SHM task of locating and assessing the severity of
transverse fractures in beam-like structures. The
relative frequency shifts (RFS) for various damage
scenarios were determined using the novel
methodology, and the generated data was used to
train the RF model. The results showed that the RF
model can discover the defect and determine the
precise location and depth of the transverse cracks if
the transverse fracture is situated where the beam is
subject to the most incredible bending stress. A
massless rotational spring of finite length could be
positioned there to imitate a crack [17]. The findings
demonstrated that by combining the suggested
Coordinate Modal Assurance Criteria with a Firefly
Algorithm or Genetic Algorithm, various local
structural problems in complex buildings can be

swiftly found. Because visual inspection of fractures
and flaws is worthless and frequently not worth
considering,  non-destructive  testing (NDT)
techniques like thermography, ultrasonic testing, X-
ray diffraction, etc., are used to forecast damage to
structures. These techniques, however, cost time and
money. As a result, itis advised that workable
alternatives  be  created. The  paperis
organized considering the various sections, i.e.,
theoretical analysis, finite element modeling and
analysis, experimental analysis, database generations,
regression modeling, artificial neural network
modeling and analysis, results and discussions, and
conclusions, after the introduction section.

From the literature review, it was found that there
is a vast research scope in the field of the detection of
cracks in beams. For crack detection, the
conventional techniques focus mainly on using
natural frequencies and mode shapes. From the
literature survey, the authors did not find a single
paper in which two-point bending stiffness was
usedas one of the ways for crack
detection. This motivated the authors todo crack
detection in a cantilever beam using bending stiffness
as a primary criterion. Hence, this paper attempts to
use the two-point bending stiffness as a primary
criterion to predict the crack depth and locations in a
cantilever beam. The predicted crack parameters
using the Regression and ANN models were validated
against the experimental results and found promising.
These good agreements with the results showed the
effectiveness of the two-point bending stiffness
approach.

1.1. Material and geometric properties of the
beam

The material properties and geometric properties
of the steel cantilever beams are given in this sub-
section.

Material properties: density (p) = 7810 kg/m?,
Young’s modulus (E) =2.17101 x 10" N/m’,
Poisson’s ratio (p) = 0.3

Geometric properties: The length of the beam
(L) and cross-sectional area are 0.4m and
0.016 x 0.016 m?, respectively; ‘I’ is the moment of
inertia of the beam.

1.2. Design of experiments and crack
configurations

Scientists and engineers can utilize the design of
experiments (DOE) method to conduct systematic
and efficient investigations into the link between
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influencing input parameters at five levels, i.e., crack
location and depth. It means that 60 mm, 120 mm,
180 mm, 240 mm, and 300 mm crack locations
have been considered. Moreover, at each location,
crack depths varied from 2 mm to 10 mm at an
interval of 2 mm. Based on the Taguchi technique, the
L,s orthogonal array has been formed for the input
parameters ranges, and the combination of the various
parameters corresponding to the twenty-five
experimental runs is presented in Table 1. Table 1
also presents various cracked cases' numerical and
experimental bending stiffness. The two stiffness
values (K;and K;) were considered dependent
variables. The global stiffness (K;) and stiffness at the
crack (K>) were considered in a cracked cantilevered
beam. The crack location and depth (L; and a) were
considered independent variables.

2. THEORETICAL ANALYSIS

A schematic of a cracked cantilevered beam is
shown in Figure 1. Furthermore, a cracked cantilever
beam is represented by two complete beam segments
joined by a torsional spring when the force is ignored,
as shown in Figure 2. Dimarogonas et al. [23] derived
the torsional stiffness (K7) equation that characterizes
the crack. The torsional stiffness of the fragmented
beam is represented in equation (1).

Crack
ijaj

L1
T — =

; L . (Dead load)

Figure 1. A cracked cantilever beam carries a point load
at the free end

EBt?
T 72m(L-L1)? (1-p2)® 1

Ky

where, B and ¢ are the width and thickness of the
beam respectively.

L;and L are the crack's distance from the fixed end
and the beam's length, respectively.

P; is the dead load applied at the free end.

The function @ is given by

® = 0.629 (%)2 — 1.047 (%)3 + 4.602 (%)4 _
9.975 (%)5 +20.295 (%)6 —
32.993 (%)7 +47.041 (%)8 -
40.693 (%)9 +19.6 (%)10 @)

where, a is the crack's depth.

The open-edged cracked beam stiffness (K;) or

global stiffness can be computed by
_ KrKp

- KT+K| (3)

The stiffness of an intact (K;) or un-cracked
cantilever beam is computed using equation (4),

3EI

1

The theoretical stiffness of an open-edged cracked
Beam segments

beam is presented in the Table 3.
5
ol JH

L1 Torsional spring (KT) B
L

‘< —_—

Figure 2. A cracked cantilever beam stiffness model

3. FINITE ELEMENT MODELING AND
ANALYSIS

The beam with an assumed open crack was
simulated using the ANSYS 12.1 finite element
program. The block command was used to help build
volumes with the necessary dimensions. Similar to
this, the main volume of the model was modified to
generate a triangular-shaped volume where it was
needed. The required three-dimensional crack
model was then generated by deducting the triangular
volume from the main volume. Solid 186 elements
[19-20] from the ANSYS element library were
used to mesh the model. At the left end of the beam,
there was no room for rotation or movement [24].
Cantilevered boundary conditions [21] were
consequently employed. A static point load of 50 N
was applied to the beam's free end to cause elastic
deformation in the bending mode. The deflections at
the crack and the free end of the cantilever beam are
shown in Figure 3.

=

TIvE=L AUG 14 2023
ot (3) 11:33:14
RSYS=0

DMK =.001878

SMN =-.001875

SMK =.334E-07 Se_04

NODAL SOLUTION

001877

—
.203E-03

| —
-.001878 -
-.417E-03

-.001461 -.001043 —.626E-03

-.001663 -.001252 -.8352-03 .3342-07

Figure 3. The two-point static deflection of a cracked
cantilever beam
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4. EXPERIMENTAL ANALYSIS

Two-point static deflection measurements were
used to find the cracks in cantilever beams. A
50 N dead load was applied at the beam's free end to
get the elastic deformation at the free end and the
crack in the bending mode. The dial gauges were
used to measure the static displacements at the free
end and the crack in the beam. Figure 4 displays the
same device's schematic. A picture of the actual
experimental setupis found in Figure 5. The
arrangement comprises a specimen holder, an EN 31
cracked specimen, and a dead load. Dial indicators
(Made: Mitutoyo; one micron least count) were
used with stands. Out of twenty-five cracked cases,
the deflection at the free end and the crack are given
for one case, i.e., crack location 60 mm, crack depth

W

10 mm, the found experimental deflection at the free
end (6,) was 1.382 mm, and the deflection at the crack
(02) was 0.02867 mm.

Dial gauge 2 Dial gauge 1
Crack

P, Dead Load

I<52 ,Ko=(P1/5,)

Figure 4. Schematic representation of a two-point static
deflection measurement

Stands

Figure 5. Experimental setup

The procedure for measuring the static
deflections was as follows: This research employed
the static deflection measurement on the cracked
cantilever beams at two specific locations. First, one
dial indicator was positioned at the free end of the
beam, and another was placed at the crack. Then, a
load of 50N was applied at the free end of the
cantilever beam, causing the beam to elastically
deform in the vertical plane. As a result, the dial
indicator at the free end provided the free end
deflection, while the one at the crack gave the
displacement at the crack of a cantilever beam.

The global stiffness (K;) and the localized stiffness
(K>) at the crack were calculated considering the
crack's static deflections, i.e., d; and dJ., respectively.
Hence, the stiffness values K; and K> were used as

input parameters for damage detection in a cantilever
beam.

5. DATABASE GENERATIONS

Because of the known crack severity, a database
consisting of shifts in bending stiffness was
required to train the inverse algorithm. As analytical
expression for the vibration of the cracked beam is
complicated and time-consuming, the required
database is generated with the help of a numerical and
experimental  analysis. FE  simulation and
experimental analysis were conducted on all the
beam models with different sizes and crack locations.
The numerical and experimental datasets of bending
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stiffness were leveraged to develop the ANN and
regression models. In this endeavor, a comprehensive
range of twenty-five different cracking scenarios
were meticulously considered. The static deflection at
the free end and the crack were measured and taken
into account for all the cracked cases. Furthermore,
the global bending stiffness (K;) and stiffness at the
crack (K;) were determined using the formula as

shown in Figure 4. The two-point bending stiffness
values (K; and K>) were used as the inputs to the
ANN and regression models, with the crack location
and depths (L;and @) as outputs. The regression
model demonstrated an excellent polynomial fit to the
data. The bending stiffness dataset, based on the
numerical and experimental analysis, is presented in
Table 1.

Table 1. Numerical and experimental stiffness results obtained for the proposed experimental plan

Sr. Crack Crack | Numerical Numerical | Experimental Experimental
No. location, depth, | stiffness, Ki stiffness, stiffness, K1 (N/m) | stiffness, K2 (N/m)
Li(m) a(m) (N/m) K>(N/m)

01 0.060 0.002 55126.79 1766784 55115.85 1767034.21
02 0.060 0.004 53276.51 1763668 53270.83 1764851.22
03 0.060 0.006 49825.61 1760563 49850.45 1761245.55
04 0.060 0.008 44345.9 1757469 44342.36 1758495.29
05 0.060 0.010 36153.29 1742160 36151.20 1743411.65
06 0.120 0.002 55309.73 460829.5 55295.60 460519.65
07 0.120 0.004 53995.68 460676.6 54004.14 460409.40
08 0.120 0.006 51546.39 460672.4 51564.94 460193.28
09 0.120 0.008 47438.33 460668.2 47434.28 460006.99
10 0.120 0.010 40683.48 458715.6 40714.62 459242.25
11 0.180 0.002 55432.37 215982.7 55447.86 216141.44
12 0.180 0.004 54644.81 215968.7 54630.54 216132.10
13 0.180 0.006 53050.4 215959.4 53047.87 216078.86
14 0.180 0.008 50301.81 2159454 50306.16 216042.45
15 0.180 0.010 45330.92 215517.2 45322.29 215912.77
16 0.240 0.002 55555.56 129032.3 55559.69 129031.26
17 0.240 0.004 55126.79 129027.3 55123.02 129024.93
18 0.240 0.006 54259.36 129025.6 54253.35 129018.27
19 0.240 0.008 52687.04 129022.3 52685.43 129010.28
20 0.240 0.010 49701.79 128866 49692.40 128964.36
21 0.300 0.002 55617.35 88028.17 55633.01 88032.82
22 0.300 0.004 55463.12 88026.62 55465.02 88031.11
23 0.300 0.006 55126.79 88025.07 55115.37 88030.49
24 0.300 0.008 54495.91 88021.97 54481.31 88027.08
25 0.300 0.010 53219.8 87950.75 53206.38 88012.98

6. REGRESSION MODELING

A regression analysis was made using Design
Expert 13.0 software to obtain the functional
relationship between the independent and dependent
variables of the proposed study in the form of
algebraic equations. This research study proposes a
correlation model between the bending stiffness and
crack parameters, i.e., crack location and depth, as a
forward approach. It is given in equation (5).

K= f(Ly,a) ®)

‘K’ is the bending stiffness of the cracked beam

‘L;’ is the distance of the crack from the cantilevered
end

‘a’ is the crack depth of the beam.

fly,a) =K =0 (6)

When global bending stiffness was considered, the
equation (6) will be as follows

fy,a) =K =0 0

Similarly, when the bending stiffness at the crack
was considered, the equations (6) will be as follows.

fy,a) =K, =0 ®)

An inverse approach to crack detection is
proposed in this work K; and K are the stiffness
plotted against the crack parameters, i.e., crack
location and depth. The global stiffness (K;) and
stiffness (K>) at the crack were used to obtain the
correlation model for the curve fitting.

Only two equations were required to find two
unknown crack parameters, i.e., crack location and
depth. Based on the non-linear relationship between
crack parameters and stiffness, a non-linear
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polynomial curve fitting was used for two equations
considering the ‘K;” and ‘K>’ stiffness. Equations (9)
and (10) were developed using the numerical data set.
Similarly, equations (11) and (12) were developed
using the experimental data set. The numerical and
experimental data set of bending stiffness values are
presented in Table 3. The regression models

developed using the numerical bending stiffness
values are given in Equation (9) and Equation (10),
respectively. Similarly, the regression models
developed using the experimental bending stiffness
values are given in Equation (11) and Eq. (12),
respectively.

56029.93658 — 7604.66446L; — 1.30970 * 10° x a — 2.14347 * 10° = L, * a + 66558.42752 * [3 —
1.2226 x 108 x a? — 6.18143 x 10° = L3 x a + 9.24786 * 108  L; * a® — 1.17203 % 10° % L3 —
1.14098 * 10° x a® — K, = 0 )

4.40077 * 10° — 5.84578 * 107 * L; — 3.24169 = 10° * a + 2.83346 = 107 * L, * a + 2.63499 * 108 «
L% +1.69736 = 108 x a® — 1.03804 = 108 = L2 x a + 1.54853 = 10° * L, * a? — 3.88659 = 108 * L3 —

3.07722 x 10 x a3 — K, = 0

(10)

55963.58886 — 6872.21815 L; — 1.15018 * 10 * a — 2.82909 * 105 * L, * a + 63276.96214 * [ —
1.23464 * 108 * a2 — 6.28421 = 10° = L5 * a + 9.31555 % 108 * L; * a® — 1.10358 = 10° = L3 —

1.14106 * 101° x a3 — K, = 0

(11)

4.40287 * 10° — 5.85148 * 107 * L; — 2.63821 = 10® x a + 2.77512 = 107 * L, * a + 2.63824 * 108 «
L3 +6.23266 = 107 x a? — 1.02272 = 108 x L3 xa + 1.51891 = 10° * L, * a? — 3.89217 = 108 * L3 —

2.39209 *101% x a3 — K, =0

To determine the locations and depths of cracks in
a cantilever beam, equation (9) and equation (10)
were used. The numerical bending stiffness (K;) and
stiffness at the crack were used (K; and were
substituted with equation (9) and equation (10),
respectively, to predict the crack depth and the
locations in a cracked beam using a numerical data
set. Then, equations (9) and (10) were solved
simultaneously using a Microsoft Excel solver to
predict the crack location and depth in a cantilever
beam. Similarly, to determine the locations and
depths of cracks in a cantilever beam, equation (11)
and equation (12) were used. The experimental
bending stiffness (K;) and stiffness at the crack were
used (K;) and were substituted in equation (11) and
equation (12), respectively. Microsoft Excel solver
was used to solve the simultaneous equations, i.e.,
equations (11) and (12).

In order to predict the crack characteristics of a
cracked cantilever beam, equations (9), (10), (11),
and (12) were applied. Regression analysis and
Design Expert software were used to generate the
third-order correlation models shown in equations
9), (10), (11), and (12). Correlation model
reliability is commonly assessed using R-squared
values. If the R-squared value is close to 1, then the
data and derived correlation models suit the data well.
The built-in correlation models described in
equations (9), (10), (11), and (12) were found to have
R-squared values of 0.9997, 0.9955, 0.9999, and
0.9953 respectively in the current experiment. The
reliability of the created correlation models is
shown by the R-squared values, which are close to 1.

(12)

Using the numerical data set, equations (9) and (10)
forecast the positions and sizes of cracks in a
cantilever beam. Using the experimental data set,
equations (10) and (11) also estimate the location and
depth of the cracks that will appear in a cantilever
beam.

7. ARTIFICIAL NEURAL NETWORK
MODELING AND ANALYSIS

The depth and location of cracks in a beam are
evaluated and predicted using artificial neural
networking (ANN). The analytical work's findings
are consistent with what was learned during training
[18, 22]. The "nntool" tool uses the intended inputs
and outputs, or targets, imported into the MATLAB
workspace. A neural network's structure is depicted
in Figure 6. In this case, a typical three-layered Feed
Forward Back Propagation (FFBP) neural network
comprises three input neurons, nine hidden neurons,
and two output neurons (Figure 6). Table 2 contains a
list of an artificial neural network's hyperparameters.
Figure 7 depicts the feed-forward, backward-
propagation neural network. While the fracture
position and depth were considered output
parameters, the bending stiffness at the free end and
the crack were considered an input parameter.
Levenberg Marquardt serves as the training function,
while MSE, LEARNGDM, and tansig serve as the
performance, adaptive learning, and transfer,
respectively. Figures 8 and 9 display the regression
plot for training, wvalidation, and testing. The
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experimental and numerical datasets were used to Table 2. Hyper-parameter of Artificial Neural Network

produce the regression curve that can be seen in

Figures 8 and 9. It displays how well the actual results Sr. No. Input It’::;:gfgters for Values
match the projected statistics. 01 Learning rate 01
02 Number of epochs 1000
03 Number of nodes in input layer 02
04 Number of neurons in the 9
hidden layer
06 Number of nodes in output 02
layer
07 Goal Zero
Hidden Layer Output Layer

Output

a

Figure 7. Feed forward back propagation neural network

Figure 6. Architecture of ANN

Training: R=0.99997 Validation: R=0.99818
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Figure 9. Regression plot based on experimental data set

8. RESULTS AND DISCUSSION

In order to check the correctness of the approach
to the numerical modeling and experimental analysis,
the bending stiffness of cracked cases of beams was
determined using the theoretical method. The global
bending stiffness (K;) calculated using the various
methods is in good agreement and is presented in
Table 3. This study investigates the bending stiffness
of a cracked cantilever beam with different crack
depths and locations experimentally and numerically.

Figures 10 and 11 show a significant relationship
between the independent variables (crack location
and crack depth) and the dependent variables
(bending stiffness). Furthermore, Figure 10 shows
that the global bending stiffness decreases as crack
depth increases at any unique location in the beam.
As the depth of the crack increases, strength is

reduced. Figure 11 shows that at constant crack depth,
the beam's global bending stiffness increases as the
crack's distance increases from the cantilevered end.
The crack nearer to the fixed end of the beam reduces
the beam stiffness significantly compared to the crack
at the free end of the cantilever beam. As a result, as
the fracture moves further from the fixed end of the
beam, the global bending stiffness increases. Thus, it
is shown that the depth and location of the crack affect
the bending stiffness. The two-point bending stiffness
(global stiffness and stiffness at the crack) was a vital
component of this experiment for identifying the
cantilever beam's fracture characteristics. The
creation of regression and ANN models was also
made possible by the utilization of experimental and
numerical datasets. The positions and depths of
cracks have been predicted using the regression and
ANN models, and the anticipated values are
contrasted with the actual fracture features. Tables 4
to 7 present the findings about the same.
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Table 3. Cantilever beam global bending stiffness (K;)

Sr. Crack Crack | Stiffness Ki Stiffness K1 | Stiffness Ki % error % error
No. | location, depth, (N/m) (N/m) (N/m) (Theoretical | (Theoretical
Li(m) a(m) Theoretical Numerical Experimental | and and
method method method numerical) | experimental)
01 0.060 0.002 54871.65 55126.79 55115.85 0.4628 0.4431
02 0.060 0.004 52851.59 53276.51 53270.83 0.7976 0.7870
03 0.060 0.006 49290.35 49825.61 49850.45 1.0743 1.1236
04 0.060 0.008 43586.39 44345.9 44342.36 1.7127 1.7048
05 0.060 0.010 34754.42 36153.29 36151.20 3.8693 3.8637
06 0.120 0.002 55102.17 55309.73 55295.60 0.3753 0.3498
07 0.120 0.004 53704.52 53995.68 54004.14 0.5392 0.5548
08 0.120 0.006 51157.61 51546.39 51564.94 0.7542 0.7899
09 0.120 0.008 46842.91 47438.33 47434.28 1.2551 1.2467
10 0.120 0.010 39522.56 40683.48 40714.62 2.8536 2.9279
11 0.180 0.002 55290.45 55432.37 55447.86 0.2560 0.2839
12 0.180 0.004 54413.60 54644.81 54630.54 0.4231 0.3971
13 0.180 0.006 52770.64 53050.4 53047.87 0.5273 0.5226
14 0.180 0.008 49847.10 50301.81 50306.16 0.9040 0.9125
15 0.180 0.010 44440.00 45330.92 45322.29 1.9654 1.9467
16 0.240 0.002 55435.59 55555.56 55559.69 0.2159 0.2234
17 0.240 0.004 54966.33 55126.79 55123.02 0.2911 0.2843
18 0.240 0.006 54067.38 54259.36 54253.35 0.3538 0.3428
19 0.240 0.008 52402.26 52687.04 52685.43 0.5405 0.5375
20 0.240 0.010 49082.05 49701.79 49692.40 1.2469 1.2283
21 0.300 0.002 55536.92 55617.35 55633.01 0.1446 0.1727
22 0.300 0.004 55352.59 55463.12 55465.02 0.1993 0.2027
23 0.300 0.006 54993.52 55126.79 55115.37 0.2418 0.2211
24 0.300 0.008 54308.46 54495.91 54481.31 0.3440 0.3173
25 0.300 0.010 52861.39 53219.8 53206.38 0.6734 0.6484

Table 4. Prediction of crack location using the regression and ANN model based on numerical data set

Sr. K1 (NVm) | K2 (N/m) Li/L Li/L % Error LyL % Error
No. (Actual) | (Regression) (ANN)

01 51786.64 | 1762115 0.06 0.05947 0.88 0.06 0.00

02 47370.91 1758706 0.06 0.05945 0.92 0.06 0.00

03 54794.52 | 460678.8 | 0.120 0.1227 -2.25 0.1208 | -0.67

04 52966.1 460674.5 | 0.120 0.1227 -2.25 0.1171 | 2.42

05 51894.14 | 215954.7 | 0.180 0.1525 15.28 0.1745 | 3.06

06 48239.27 | 215940.7 | 0.180 0.1523 15.39 0.2074 | -15.22
07 54265.54 | 178486 0.200 0.161 19.50 0.1782 | 10.90
08 51188.49 178433.1 0.200 0.161 19.50 0.1746 | 12.70
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Table S. Prediction of crack location using the regression and ANN model based on experimental data set

Sr. | Ki (N/m) K> (N/m) Li/L Li/L % Error Li/L % Error
No. (Actual) | (Regression) (ANN)

01 | 51772.27 1764309 0.06 0.05959 0.69 0.06 0.00

02 | 47307.27 1762158 0.06 0.05953 0.79 0.06 0.00

03 | 54787.5 460456 0.120 0.124 -3.23 0.121 -0.83

04 | 52965.26 460566.3 0.120 0.124 -3.23 0.117 2.50

05 | 51874.65 216052.7 0.180 0.157 14.65 0.1745 | 3.06

06 | 48233.68 215982.7 0.180 0.1564 15.09 0.179 0.56

07 | 54269.55 178484.1 0.200 0.167 19.76 0.1781 | 10.95

08 | 51188.49 178433.1 0.200 0.167 19.76 0.1746 | 12.70

Table 6. Prediction of crack depth using the regression and ANN model based on numerical data set

Sr. | Ki (N/m) | K2 (N/m) ast at % Error | a/t (ANN) | % Error
No. (Actual) | (Regression)

01 51786.64 | 1762115 0.005 0.005044 -0.88 0.0049 2.00

02 4737091 1758706 0.007 0.007023 -0.33 0.0072 -2.86

03 54794.52 | 460678.8 | 0.003 0.002922 2.60 0.0028 6.67

04 52966.1 460674.5 | 0.005 0.005024 -0.48 0.0039 22.00
05 51894.14 | 215954.7 | 0.007 0.0064 8.57 0.009 -28.57
06 48239.27 | 215940.7 | 0.009 0.0083 7.78 0.01 -11.11
07 54265.54 | 178486 0.005 0.00424 15.20 0.0043 14.00
08 51188.49 178433.1 0.008 0.00698 12.75 0.0099 -23.75

Table 7. Prediction of crack depth using the regression and ANN model based on experimental data set

Sr. | Ki (N/m) | K; (N/m) a/t a/t % Error | a/t (ANN) % Error
No. (Actual) | (Regression)
01 51772.27 | 1764309 0.005 0.005051 -1.02 0.0049 2.00
02 | 47307.27 | 1762158 0.007 0.007044 -0.63 0.0071 -1.43
03 54787.5 460456 0.003 0.00295 1.67 0.0028 6.67
04 | 52965.26 | 460566.3 0.005 0.005043 -0.86 0.0039 22.00
05 51874.65 | 216052.7 0.007 0.00645 7.86 0.009 -28.57
06 | 48233.68 | 215982.7 0.009 0.00839 6.78 0.0099 -10.00
07 | 54269.55 | 178484.1 0.005 0.0044 12.00 0.0043 14.00
08 51188.49 | 178433.1 0.008 0.0072 10.00 0.0099 -23.75
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Figure 13. Predicted crack locations using ANN and
regression model at different crack depth ratio based on
an experimental dataset

Figure 12. Predicted crack locations using ANN and
regression model at different crack depth ratio based on a
numerical dataset
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Figure 15. Predicted crack depth using ANN, and
regression models at different crack location ratios based
on an experimental data set

Figures 12 and 13 show the actual and predicted
crack locations using the numerical dataset and
experimental data set. Similarly, Figures 14 and 15
show the actual and predicted crack depths using the
numerical dataset and experimental data set. From
Figs. 12 to 15, it is clear that the regression and ANN
models give good predictions for the crack depths and
locations in cantilever beams. Based on the numerical
dataset, it is found that the regression and ANN
models give average errors of 9.386 and 5.621 to
predict the crack locations, respectively. Similarly,
based on the experimental data set, it is found that the
regression and ANN models give average errors of
9.65 and 3.825 to predict the crack locations,
respectively. Based on the experimental dataset, it is
found that the regression and ANN models give
average errors of 6.07 and 13.87 to predict the crack
depths, respectively. Similarly, based on the
experimental dataset, it is found that the regression

and ANN models give average errors of 5.102 and
13.55 to predict the crack depths, respectively. Hence,
it is clear that the two-point bending stiffness
approach (inverse method) leads to good predictions
regarding the crack parameters in a cantilever
beam. The regression model results based on the
numerical dataset showed that the mean square error
for the crack location (L) and crack depth (a) were
0.0005725 and 0.00000030964, respectively. Based
on the ANN model results from the numerical dataset,
the mean square error for the crack location (L;) and
crack depth (a) were 0.0002388 and 0.0000013,
respectively. The regression model results based on
the experimental dataset showed that the mean square
error for the crack location (L;) and crack depth (a)
were 0.00041204 and 0.0000002104, respectively.
Based on the ANN model results from the
experimental dataset, the mean square error for the
crack location (L;) and crack depth (a) were
0.0001457 and 0.0000012725, respectively. The
regression model gives comparatively better
predictions for the crack depths than the ANN model.
On the other hand, the ANN model gives better
predictions for predicting the crack locations than the
regression models.

9. CONCLUSIONS

The proposed study uses a Two-point bending
stiffness approach to predict the crack depth and
location in the cantilever beam. It was observed that
the presence of transverse cracks changes the bending
stiffness of the beams. Two-point bending stiffness
values were used as inputs for the regression and the
ANN models. Crack location and depth were
considered to be the output responses. The
concluding remarks are drawn herewith:

e The two-point bending stiffness approach
gives good results for predicting the crack
depth and the crack location in a cantilever
beam (inverse crack detection problem).

e The theoretical, experimental, and numerical
results for the bending stiffness are
encouraging and valid. The maximum
percentage error for the global bending
stiffness between theoretical and numerical
methods is 3.8693. Similarly, the maximum
percentage error for the global bending
stiffness between the theoretical and
experimental methods is 3.8637

e Regression and ANN models based on the
numerical and experimental data sets give
good results in predicting the crack
parameters, i.e., crack depth and locations.

e The regression and ANN model results show
that the two-point bending stiffness method is
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a viable, non-destructive method for crack
detection in structures, i.e., the cantilever
beam.

Based on the estimation of mean square errors,
the regression model gives comparatively
better predictions for the crack depths than the
ANN model. On the other hand, the ANN
model gives better results for predicting the
crack locations than the regression models.
The cracked beam's global bending stiffness
increases as the crack's distance increases from
the cantilevered end to the free end.

The global bending stiffness decreases as the
depth of the crack increases at a constant crack
location.
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