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Abstract: - The present paper addresses the generation of power-law, colored digital noise signals 
(sequences) with arbitrary spectral slope. In the beginning, brief background information is given about 
some noise features. Further, a newly proposed method is described, based on generation of a white noise 
signal, its transformation into the frequency domain, spectral processing and inverse transform back into 
the time domain. Computer simulations are performed to confirm the consistency of the algorithm, 
including estimation of the power spectral density and the autocorrelation, along with example of its 
outperformance in comparison with the corresponding in-built Matlab® function. 
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1. INTRODUCTION 
 

The noise is a fundamental aspect of the reality. 
This is a ubiquitous phenomenon spanning 
innumerable fields of the nature. The unavoidable 
presence of the thermal noise in the universe is just 
enough to allude. This and other types of noises are 
presented in the structure of the nature itself: the 
arrangement of the cells in the human retina, the 
model of occurrence of natural disasters, the statistics 
of DNA sequences, etc. [1, 2]. 

The generation of noise signals with given 
parameters is a classic problem in the field of circuits 
and systems, signal processing, automation, 
mechanics, acoustics, vibration engineering, 
econometrics, electrical and electronics 
measurements and instrumentation, etc.  

This paper discusses a method for generation of 
digital, pseudorandom colored (power-law) noise 
sequences, with arbitrary power spectral density  
(PSD) slope f   (  ), regardless of the used 

DSP device (trivial PC, PLC, FPGA, etc.). The basic 
idea of the method is firstly described in [3] and now, 
with modifications, independently proposed by the 
author. 

The generated noise could be used as a test signal 
for software computer simulations or outputted via 
some kind of data acquisition system (i.e. a sound 
card or a professional DAQ device) for real-world 
experiments or measurement procedures.  

There are two main approaches for obtaining 
power-law noises: physical and statistical. Physical 
approach refers to methods based on microscopic 
considerations of the underling physical process that 
produces the corresponding noise. Unfortunately 
each theory is specific to the device or system being 
considered, and therefore somehow limited. On the 
other hand, the statistical approach does not look at 

given device, system or process, but treat the 
phenomenon itself as a statistical subject and is more 
generalized and fundamental [4]. This statistical 
approach is adopted further in the paper.  

In order to avoid possible misunderstanding of the 
noise essence, in the following a brief preliminary 
agreements are made.  

The term “noise signal” is referred to a signal 
produced by a stochastic process. Further, one 
considered the noise signal itself and not the 
underling process. The term “colored noise” is used 
to refer to any non-white noise signal whose PSD is 
not a constant but is a function of the frequency. 

The standard definition of the white noise signal 
implies an infinity bandwidth, hence an infinity 
energy (according to the Planck's law) and thus it is a 
purely theoretical construction and physically 
unrealizable. In the real-world applications the noise 
signal is considered white if it has flat PSD over the 
frequency range relevant to the context [4]. 

Often, it is incorrectly assumed the terms 
“Gaussian noise” and “white noise” to be used 
interchangeably. One must remind that Gaussianity 
refers to the amplitude probability distribution in the 
time domain, while the term “white” refers to the 
independently distributed power in the frequency 
domain and neither property implies the other. 

The threshold value 1    defines the pink noise 
and also marks the boundary between the predictable 
and unpredictable behavior of the generated noise 
signal [5]. For values 1    the noise signals are 
non-stationary and long-term correlated [6]. 

Note that the Gaussianity and stationarity of the 
generated signals are not a requirement, but they must 
satisfy the following conditions [7]: 

1) to be non-stationary for 1   ; 
2) to be scale-invariant (i.e. self-affine); 
3) to have PSD with the desired slope over the 

entire frequency range of interest. 
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Scale invariance refers to the independence of the 
model from the scale of observation. The fact that the 
power-law noises are scale invariant is suggested by 
their PSD shape. If the frequency scale is changed, 

the original amplitude scaling can be obtained by 
simply multiplying with an appropriate constant [4]. 

Different types of colored noise signals are 
distinguished by the slope of their PSD (on a log-log 
scale). A few of them are listed in Table 1. 

 

Table 1. Information about some types colored noise signals [1, 2, 8, 9, 10] 

Noise type   PSD slope 
dependence

Spectral 
slope rate

Examples 

Violet 
noise 

+2 2f  
+6 dB/oct, 
+20 dB/dec 

Signal from an acoustic thermal 
noise of water | Differentiation of 

a white noise signal 

Blue noise +1 f  +3 dB/oct, 
+10 dB/dec 

Signal from a Cherenkov 
radiation process | High-

frequency filtering of a white 
noise signal 

White 
noise 

0 flat 
0 dB/oct, 
0 dB/dec 

Signal from a white noise process 
(e.g. Johnson–Nyquist thermal 

noise) 

Pink noise ‒1 1
f  -3 dB/oct, 

-10 dB/dec 

Signal from statistical 
fluctuations of a number of 

natural processes | 
Low-frequency filtering of a 

white noise signal 

Red noise ‒2 2
1

f
  -6 dB/oct, 

-20 dB/dec 

Signal from a Brownian motion 
(Winner process) | Integration of 

a white noise signal 

Black noise 2   - 
> -6 dB/oct, 

> -20 
dB/dec

Model of the frequency of the 
natural disasters 

 
2. PROPOSED METHOD DESCRIPTION 
 

An object of consideration is the generation of a 
real-world (i.e. mathematically real and time limited) 
discrete noise signal (sequence) with zero mean, unity 
standard deviation and arbitrary PSD slope f  , i.e. 

amplitude spectrum density (ASD) slope 2f


  

   
 [ ]scn nT ,                    (1) 

 
where: {1,..., }n N   is the sample number; 

      N   – number of all samples; 
      sT – sampling time interval. 

The duration of the sequence is 
 

 sT N T  .                             (2) 

 
The generation of the signal is performed via 

processing of an i.i.d, zero mean, additive white 
Gaussian noise [ ]wn n . The last could be generated 

via one of the known methods [11, 12, 13]. 
One proposed a spectral processing technique, 

involving a manipulation of the amplitude spectrum 
of the white noise time sequence in order to obtain a 
new colored noise time sequence with an arbitrary 

spectral slope in the frequency domain. The phase 
spectrum is kept untouched since there is no need of 
manipulation.  

 
 

Figure 1. Algorithm of the proposed colored noise 
generation procedure. The generation of the desired 

colored noise signal is obtained via spectral processing of 
a white noise signal. 
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The generation algorithm has three basic steps (cf. 
Fig. 1): (i) generation of a white noise signal [ ]wn n  

in the time domain; (ii) DFT on a [ ]wn n , 

manipulation of the complex spectral coefficients in 
order to obtain the new spectrum of the desired 
colored noise signal and IDFT on the last; (iii) signal 
conditioning of the colored noise signal [ ]cn n  in the 

time domain in order to ensure zero mean and unity 
standard deviation values. 

The DFT/IDFT transforms are performed 
according to [14]: 
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where {1,..., }k N   is the spectral component 

number. 
The complex spectrum obtained using Eq. (3) has 

a structure as shown in Fig. 2. The spectrum has 
Hermitian symmetry where the right half is the 
unique one, including the DC and (eventually) the 
Nyquist component, and the right half is a conjugate 
flipped copy of the left one. Hence, it is more easily 
to manipulate only the right half of the spectrum and 
then to make a conjugate flipped copy of it.  

 

1

2

N  
  

Sf
N

[ ]WN k

 
 

Figure 2. Structure of the discrete spectrum of the 
signals. The left half of the spectrum (located between the 
DC and Nyquist components) is the unique one. The right 
half is a conjugate flipped copy of the left one, excluding 

the DC and Nyquist components – they are unique. 
 
 The spectral slope setting procedure itself             

(cf. Fig. 1) is done as shown in Fig. 3. One must note 
that: (i)   [ ]WN k  is the complex amplitude spectrum 

and not a PSD of the white noise signal; (ii) the 
spectral coefficient k and the linear frequency f are 
uniquely linked; (iii) the division of the complex 
spectrum coefficients is equivalent to division of the 
amplitude spectrum while the phase spectrum remain 
untouched; (iv) any orthogonal transformation         
(e.g. DFT) of the Gaussian random signal will results 
a new Gaussian random signal with the same variance 

[15]. This ensures an independent distribution of both 
the amplitude and phase spectrums of the generated 
colored noise signal. 

 

[ ]WN k
2[ ]WN k k


 [ ]CN k

 
 

Figure 3. Block diagram of the spectral slope setting 
procedure. Note that the frequency index k is used instead 

of the actual frequency f. 
 
Finally, the mean value of the colored noise signal 

is set to zero, and the RMS-value is set to unity: 
 

 [ ] [ ] E [ ]cn n cn n cn n  ,                   (5) 
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


,                      (6) 

 
where  E   denotes the expected value of the signal. 

These actions allow the user to set the desirable 
values of the mean and RMS values freely as 

 
ˆ [ ]cn n   ,                            (7) 

 
where:   is the desired DC value of the signal; 

        – desired RMS value of the signal. 
 
3. SIMULATION RESULTS 
 

Computer simulations were performed with 
Matlab® to examine the performance of the proposed 
colored noise generation algorithm.  

Noise sequences of different types were generated 
with duration T = 300 s and length 613,23 10N    
samples at sampling frequency 44100sf   Hz. The 

PSD and the auto-correlation function (ACF) of the 
generated signals are listed in Table 2. 

The PSD is computed using the Welch’s modified 
periodogram [16] with the Hamming window with 
length 3132,3 10win    and overlapping 

3
4ovrlp win  . 

The visual examination of the PSD plots 
confirmed the desired slope rate of the generated 
signals and their scale-invariance. The expectation of 
the ACFs approves the thesis of long-term correlation 
of the signals for 1   . 
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Table 2. PSDs and ACFs of some generated colored noise signals 
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Further, the generated signals are tested for 
stationarity using the Kwiatkowski–Phillips–
Schmidt–Shin (KPSS) test [17] and the augmented 
Dickey–Fuller test (ADF) [18]. The goal is to show 
that the proposed algorithm generates non-stationary 

noise sequences for 1    which is in good 
agreement with the theory [4, 7]. For all tests, the 
significance level is chosen to be 0,05. The results are 
shown in Table 3. 

 

Table 3. Results from the noise signals’ stationarity tests. 

Noise type 
KPSS test ADF test

Result comment 
p-value Test result p-value Test result

Violet Noise 0,100 
The signal is 

trend-stationary
0,001 

The signal has no 
unit root

The signal is certainly 
stationary 

Blue Noise 0,100 
The signal is 

trend-stationary
0,001 

The signal has no 
unit root

The signal is certainly 
stationary 

White Noise 0,100 
The signal is 

trend-stationary
0,001 

The signal has no 
unit root

The signal is certainly 
stationary 

Pink Noise 0,010 
The signal is not 
trend-stationary 

0,001 
The signal has no 

unit root 

The signal is not stationary, 
but has no unit root. The 
signal is heteroscedastic

Red Noise 0,010 
The signal is not 
trend-stationary

0,109 
The signal has a 

unit root
The signal is certainly non-

stationary 

Black Noise 0,010 
The signal is not 
trend-stationary

0,651 
The signal has a 

unit root
The signal is certainly non-

stationary 
 

Table 4. Speed comparison of the proposed and the corresponding in-built Matlab® functions 

Noise type 

Short sequence, T = 1 s Long sequence, T = 300 s (5 min) 
Authors’ 
function 
time, s 

Matlab® 
function 
time, s

Out- 
performing 

Authors’ 
function 
time, s 

Matlab® 
function 
time, s 

Out- 
performing 

Violet Noise 0,0032 0,0052 38,5 % 1,0809 1,2854 15,9 % 
Blue Noise 0,0032 0,0051 37,3 % 1,0293 1,2570 18,1 % 
Pink Noise 0,0040 0,0054 25,9 % 1,2382 1,2904 4,0 % 
Red Noise 0,0031 0,0052 40,4 % 0,9963 1,2324 19,2 % 

  
 Finally, tests have been made to show the 

outperforming of the proposed algorithm in 
comparison with the in-build Matlab® function 
dsp.ColoredNoise System object™ [19], that 
implements an autoregressive method of order 63, 
based on [4]. The results are listed in Table 4, 
averaged over 100 runs of the two routines. 

One can deduce that the author’s function is faster 
than the Matlab® one, moreover the last allows values 
of   only in the interval [ 2, 2]   . In addition, the 

proposed method can be used in real-time 
applications, since the execution time is far less           
in comparison with the duration of a generated    
signal itself. 

All simulations clarify that the proposed algorithm 
is consistent and produced noise sequences that meet 
the requirements listed above in Section 1. 
 
4. CONCLUSIONS 
 

In the paper a method for colored noise generation 
with arbitrary user-defined spectral slope is 
presented. The procedure is based on generation of a 
white noise time sequence, its spectral processing in 

the frequency domain and translation of the newly 
obtained spectrum back in the time domain. Every 
spectral line is weighted proportionally to its spectral 
number (i.e. frequency), so the overall ASD slope is 

proportional to the frequency by the law 2f


 and the 

PSD slope – by f  . Also, it is possible to control the 

average and RMS values of the generated colored 
noise sequence. 

The method is tested in the Matlab® environment 
and the results clearly indicate its consistence. It is 
simple and quick and can be used to generate noise 
over frequency band of arbitrary size with arbitrary 
values of the PSD slope and ability of real-time 
operation. 

The proposed method is a new impact in the noise 
generation practice. The possible applications 
including but are not limited to audio, acoustics, 
vibration and oceanographic engineering, 
microelectronics, neuroscience, econometrics, in 
measurements and simulation applications, including 
real-time ones. The algorithm is implemented in the 
Matlab® software environment as Matlab®-functions 
and accessible at [20, 21].   



 

RJAV vol 15 issue 1/2018                                          19                                                         ISSN 1584-7284 

 
REFERENCES 
 
[1]  Handel P., Chung A., Noise in physical systems and 1/f 

fluctuations, New York, AIP, 1993. 
[2]  Milotti E., ”1/f noise: A pedagogical review”, Online at: 

http://arxiv.org/abs/physics/0204033, Last accessed on Nov. 
15th, 2017. 

[3]  Timmer J., König M., “On generating power law noise”, 
Astronomy and Astrophysics, Vol. 300, No. 3, pp. 707-710, 
1995.  

[4]  Kasdin N., “Discrete simulation of colored noise and 
stochastic processes and 1/fα power law noise generation”, 
Proceedings of the IEEE, Vol. 83, No. 5, pp. 802-827, May 
1995. DOI: 10.1109/5.381848  

[5]  Silverman M., A certain uncertainty: Nature’s random 
ways, Cambridge, Cambridge University Press, 2014. 

[6]  Beran J., Feng Y., Ghosh S., Kulik R., Long-Memory 
Processes: Probabilistic Properties and Statistical Methods, 
New York, Springer, 2013. 

[7]  Kasdin N., Walter T., “Discrete simulation of power law 
noise”, Proceedings of the 1992 IEEE Frequency Control 
Symposium, pp. 274-283, 1992. DOI: 
10.1109/FREQ.1992.270003 

[8]  Shepard B., Refining sound: A practical guide to synthesis 
and synthesizers, Oxford, Oxford University Press, 2013. 

[9]  Schroeder M., Fractals, Chaos, Power Laws: Minutes from 
an Infinite Paradise. New York, Dover Publications, 2009. 

[10]  Federal Standard 1037C - Telecommunications: Glossary of 
Telecommunications Terms. Lanham, Government 
Institutes, 1997. Online at: https://www.its.bldrdoc.gov/fs-
1037/fs-1037c.htm, Last accessed on Nov. 15th, 2017. 

[11]  Box G., Muller M., “A Note on the Generation of Random 
Normal Deviates”, The Annals of Mathematical Statistics, 
Vol. 29, No. 2, pp. 610-611,1958. DOI: 
10.1214/aoms/1177706645 

[12]  Marsaglia G., Bray T., “A Convenient Method for 
Generating Normal Variables”, SIAM Review, Vol. 6, No. 3, 
pp. 260-264, 1964. DOI: 10.1137/1006063 

[13]  Marsaglia G., Tsang W., “The Ziggurat Method for 
Generating Random Variables”, Journal of Statistical 
Software, Vol. 5, No. 8, pp. 1-7, Oct. 2000. DOI: 
10.18637/jss.v005.i08   

[14]  Ingle V., Proakis J., Digital Signal Processing Using 
MATLAB, Stamford, Cengage Learning, 2012. 

[15] Howell K., Principles of Fourier Analysis, Boca Raton, CRC 
Press, 2017. 

[16]  Manolakis D., Ingle V., Applied Digital Signal Processing, 
Cambridge, Cambridge University Press, 2011. 

[17]  Kwiatkowski D., Phillips P., Schmidt P., Shin Y., “Testing 
the null hypothesis of stationarity against the alternative of a 
unit root”, Journal of Econometrics, Vol. 54, No. 1-3, pp. 
159-178, 1992. DOI: 10.1016/0304-4076(92)90104-Y. 

[18]  Dickey D., Fuller W., “Distribution of the Estimators for 
Autoregressive Time Series With a Unit Root”, Journal of 
the American Statistical Association, Vol. 74, No. 366, pp. 
427-431, Jun. 1979. DOI: 10.2307/2286348  

[19]  DSP System Toolbox Reference, Natick, The MathWorks 
Inc., 2017. Online at: https://www.mathworks.com/help/
pdf_doc/dsp/dsp_ref.pdf, Last accessed on Nov. 15th, 2017. 

[20]  Zhivomirov H., “Pink, Red, Blue and Violet Noise 
Generation with Matlab Implementation, version 1.6”, 
Online at: https://www.mathworks.com/matlabcentral/
fileexchange/42919-pink--red--blue-and-violet-noise-
generation-with-matlab-implementation, Last accessed on 
Nov. 15th, 2017. 

[21]  Zhivomirov H., “Arbitrary Spectral Slope Noise Generation 
with Matlab Implementation, version 1.1”, Online at: 
https://www.mathworks.com/matlabcentral/fileexchange/48
628-arbitrary-spectral-slope-noise-generation-with-matlab-
implementation, Last accessed on Nov. 15th, 2017. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


