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Abstract: - The effect of external excitation frequency variation on the vibrations of a damped cubic 
nonlinear equation is investigated. Three types of frequency variations are considered: Decaying type 
variation, built-in type variation, and harmonic variation. Approximate solutions are constructed using the 
Method of Multiple Scales. Steady-state deterministic solutions are possible in the first two cases for long 
time scales. In the harmonic variation case, steady-state solutions are not possible, and the amplitudes and 
phases do not tend to a constant value. Direct integration of the model depicts the chaotic behavior of the 
system. 
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1. INTRODUCTION  
 

Mechanical and electrical systems often display 
oscillatory behavior. Vibrations of continuous 
systems such as strips and beams are examples of 
mechanical vibratory systems. Alternating currents 
are examples of electrical vibratory systems. In 
modeling nonlinear oscillatory behavior, Duffing-
type equations frequently appear. They may be 
directly derived from the discrete systems, such as the 
vibrations of a concentrated mass attached to a 
nonlinear spring, or can be reduced from a partial 
differential equation after the discretization process, 
such as the vibrations of continuous systems. Duffing 
equations may possess several different types of 
nonlinearities. The nonlinearities may be of cubic 
type [1-9], of mixed cubic-quintic type [8, 10-14], of 
only quintic type [8], of mixed quadratic-cubic type 
[8, 9, 15, 16], of cubic-quintic-septic type [17-19], or 
of a functional type [20, 21]. Since the models do not 
possess exact analytical solutions, approximate 
analytical solutions appeared in the mentioned 
literature. These include variants of the perturbation 
methods such as the Lindstedt-Poincaré method, the 
Method of Multiple Scales, the Multiple Scales 
Lindstedt Poincaré Method, Harmonic Balance 
Method, Shift-Perturbation Method, and Perturbation 
Iteration method. Other approximate techniques 
include Homotopy Analysis Method, Taylor 
Wavelets, Differential Transform Method, Fourier 
coefficients, Jacobi Elliptic functions, Laplace 
Decomposition Algorithm, etc. In this work, the 
Method of Multiple Scales has been employed in 
search of approximate analytical solutions. The 
method has proven to be most effective in analyzing 
nonlinear dynamical systems [22, 23].  

In all the previous work [1-23], the physical 
parameters remain constant during vibrations. In a 

recent study [24], the variations of damping, 
nonlinearity coefficient, and external excitation 
amplitude were investigated using the Method of 
Multiple Scales. However, the variations in the 
external excitation frequency were not addressed in 
that work. The main goal, therefore, in this study is to 
treat such variations and their effects on the dynamics 
of the system. Three different mathematical functions 
are considered to express the variations in the external 
excitation frequencies: The decaying type, the built-
in type, and the harmonic type. In the decaying type 
excitations, the steady state solutions tend to constant 
values, as can also be numerically verified. In 
experimental applications, it is a usual practice to 
increase or lower the excitation frequency. In this first 
case investigated, the aim is to search for transient 
and steady-state solutions when the excitation 
frequency is gradually lowered from a given constant 
value. In the built-in type excitations, the steady state 
solutions tend to harmonic solutions with amplitudes 
and phases retaining constant values. This second 
case of an exponentially increasing frequency can 
occur in electronic systems that are turned on, and 
takes some time before the excitation frequency 
reaches its nominal value. In signal processing 
applications, one usually encounters frequency shifts 
due to noise, which has to be eliminated [25]. 
Harmonically varying excitation frequencies about a 
mean frequency may be modeled to incorporate the 
noise in such systems. The response behavior is the 
most complex one compared to the previous two 
cases, leading to chaotic-type behavior. The 
amplitudes and phases do not tend to constant values 
and remain variable. The direct numerical solutions 
are also expressed in the differential space, which is 
proposed as a recent tool to display the nonlinear 
behavior [26].  
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Nonlinear oscillating circuits corresponding to a 
similar model of the Duffing-Holmes equation       
were shown experimentally to exhibit chaotic 
behavior [27].  

In summary, the three models used in expressing 
the variations in the external excitation frequencies 
were not studied openly in the previous work, and the 
goal in this study is to exhibit the dynamic behavior 
in such cases. While the first two cases of decaying 
frequencies and built-in type frequencies lead to 
deterministic solutions, the third case of harmonically 
varying frequency may lead to more complex 
behavior, such as chaotic motions.  
 
2. DECAYING EXTERNAL EXCITATION 
FREQUENCY  
 

The mathematical model consists of forced 
vibrations of a damped cubic nonlinear system 
 

𝑥̈𝑥 + 𝜔𝜔0
2𝑥𝑥 + 𝜀𝜀𝜀𝜀𝑥̇𝑥 + 𝜀𝜀𝑥𝑥3 = 𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀(Ω(𝑡𝑡)𝑡𝑡) ,   (1) 

 
with the frequency variation being of a decaying type 

Ω = Ω0𝑒𝑒−𝜀𝜀𝜀𝜀𝜀𝜀  .   (2) 
 
The Method of Multiple Scales, known to 

effectively analyse such systems and produce 
solutions compatible with experimentation, has been 
used [22, 23] in search of approximate analytical 
solutions. Primary resonances are considered in the 
subsequent analysis. They are the most dangerous 
resonances leading to the highest response 
amplitudes, which occur when the external excitation 
is near to one of the natural frequencies. In 
accordance, the damping, the nonlinearity, and the 
external excitation amplitudes are re-ordered such 
that their effects balance each other. To ensure small 
decay rates, the perturbation parameter 𝜀𝜀 is 
incorporated in (2) also. Instead of employing several 
different perturbation parameters, it is better to use a 
single perturbation parameter [28].  

Using two different time scales in the perturbation 
expansion, the approximate response is  

𝑥𝑥(𝑡𝑡; 𝜀𝜀) = 𝑥𝑥0(𝑇𝑇0,𝑇𝑇1) + 𝜀𝜀𝑥𝑥1(𝑇𝑇0,𝑇𝑇1) + ⋯ ,  (3) 
 

where 𝑇𝑇0 = 𝑡𝑡 and 𝑇𝑇1 = 𝜀𝜀𝜀𝜀 are the usual fast and slow 
time scales in the Method of Multiple Scales [22]. The 
time derivatives in terms of the new time scales are 

𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐷𝐷0 + 𝜀𝜀𝐷𝐷1 + ⋯,         

𝑑𝑑2

𝑑𝑑𝑡𝑡2
= 𝐷𝐷02 + 2𝜀𝜀𝐷𝐷0𝐷𝐷1 + ⋯,   

𝐷𝐷0 = 𝜕𝜕
𝜕𝜕𝑇𝑇0

, 𝐷𝐷1 = 𝜕𝜕
𝜕𝜕𝑇𝑇1

      (4) 

Inserting (2)-(4) into (1) and separating at each 
order of approximation yields 

𝐷𝐷02𝑥𝑥0 + 𝜔𝜔0
2𝑥𝑥0 = 0        (5) 

 
𝐷𝐷02𝑥𝑥1 + 𝜔𝜔0

2𝑥𝑥1 = −2𝐷𝐷0𝐷𝐷1𝑥𝑥0 − 𝜇𝜇𝐷𝐷0𝑥𝑥0  
−𝑥𝑥03 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�Ω0𝑒𝑒−𝜆𝜆𝑇𝑇1𝑇𝑇0�.  (6) 

 
The first-order solution is 

 
x0 = A(T1)eiω0T0 + cc      

= 𝑎𝑎(𝑇𝑇1)𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑇𝑇0 + 𝛽𝛽(𝑇𝑇1)),     (7) 
 
where cc represents complex conjugates and            
𝐴𝐴 = 1

2
𝑎𝑎𝑒𝑒𝑖𝑖𝑖𝑖  are complex amplitudes. 

  
For primary resonances, the external excitation 

frequency is near to the natural frequency 

Ω0 = 𝜔𝜔0 + 𝜀𝜀𝜀𝜀 ,      (8) 
 
with 𝜎𝜎 being a parameter to express the nearness of 
the frequencies. Inserting (7) into the right-hand side 
of (6), the equation is 

𝐷𝐷02𝑥𝑥1 + 𝜔𝜔0
2𝑥𝑥1 = −2𝑖𝑖𝜔𝜔0𝐷𝐷1𝐴𝐴𝑒𝑒𝑖𝑖𝜔𝜔0𝑇𝑇0 

−𝜇𝜇𝜇𝜇𝜔𝜔0𝐴𝐴𝑒𝑒𝑖𝑖𝜔𝜔0𝑇𝑇0 − 𝐴𝐴3𝑒𝑒3𝑖𝑖𝜔𝜔0𝑇𝑇0 
−3𝐴𝐴2𝐴̅𝐴𝑒𝑒𝑖𝑖𝜔𝜔0𝑇𝑇0 + 𝑓𝑓

2
𝑒𝑒𝑖𝑖Ω0𝑒𝑒−𝜆𝜆𝑇𝑇1𝑇𝑇0  .       (9) 

 
Elimination of secular terms, which are 

responsible for unphysical blow-up solutions, yield 
the complex amplitude equation in view of (8) 

2𝑖𝑖𝜔𝜔0𝐷𝐷1𝐴𝐴 + 𝜇𝜇𝜇𝜇𝜔𝜔0𝐴𝐴 + 
3𝐴𝐴2𝐴̅𝐴 − 𝑓𝑓

2
𝑒𝑒𝑖𝑖𝜎𝜎𝜎𝜎1𝑒𝑒−𝜆𝜆𝑇𝑇1 = 0                (10) 

Using the polar form 

𝐴𝐴 = 1
2
𝑎𝑎𝑒𝑒𝑖𝑖𝑖𝑖   ,    (11) 

The complex amplitude equation (10) is separated 
into its imaginary and real parts   

𝜔𝜔0𝐷𝐷1𝑎𝑎 + 1
2
𝜇𝜇𝜔𝜔0𝑎𝑎 −

𝑓𝑓
2
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 0    (12) 

−𝜔𝜔0𝑎𝑎𝐷𝐷1𝛽𝛽 + 3
8
𝑎𝑎3 − 𝑓𝑓

2
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0 ,   (13) 

where 

𝛾𝛾 = 𝜎𝜎𝜎𝜎1𝑒𝑒−𝜆𝜆𝑇𝑇1 − 𝛽𝛽      
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   𝐷𝐷1𝛽𝛽 =  𝜎𝜎(1− 𝜆𝜆𝜆𝜆1)𝑒𝑒−𝜆𝜆𝑇𝑇1 − 𝐷𝐷1𝛾𝛾 .       (14) 

Hence, the amplitude and phase variations are 
governed by 

𝐷𝐷1𝑎𝑎 = −1
2
𝜇𝜇𝜇𝜇 + 𝑓𝑓

2𝜔𝜔0
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠     (15) 

𝐷𝐷1𝛾𝛾 = 𝜎𝜎(1− 𝜆𝜆𝜆𝜆1)𝑒𝑒−𝜆𝜆𝑇𝑇1 −
3

8𝜔𝜔0
𝑎𝑎2

+
𝑓𝑓

2𝜔𝜔0𝑎𝑎
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

(16) 

 

From (7), (8), (11), and (14), the unsteady solution 
is  

𝑥𝑥(𝑡𝑡) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�Ω0𝑡𝑡 − 𝜀𝜀𝜀𝜀𝜀𝜀�1 − 𝑒𝑒−𝜀𝜀𝜀𝜀𝜀𝜀� − 𝛾𝛾�,  (17) 

where the real amplitudes and phases are variable 
and governed by (15) and (16).  

For steady state solutions, due to degeneracy, the 
analysis has to be repeated from the beginning. Since 
the external excitation frequency decays, the external 
excitation term becomes a constant force in the long 
run, and the model to be solved is 

𝑥̈𝑥 + 𝜔𝜔0
2𝑥𝑥 + 𝜀𝜀𝜀𝜀𝑥̇𝑥 + 𝜀𝜀𝑥𝑥3 = 𝜀𝜀𝜀𝜀 ,   (18) 

Repeating a similar analysis, the equations to be 
solved are 

𝐷𝐷02𝑥𝑥0 + 𝜔𝜔0
2𝑥𝑥0 = 0      (19) 

𝐷𝐷02𝑥𝑥1 + 𝜔𝜔0
2𝑥𝑥1 = −2𝐷𝐷0𝐷𝐷1𝑥𝑥0 − 𝜇𝜇𝐷𝐷0𝑥𝑥0 − 𝑥𝑥03

+ 𝑓𝑓 (20) 

The first-order solution is again given in (7). 
Inserting and eliminating secular terms at the next 
order yields 

2𝑖𝑖𝜔𝜔0𝐷𝐷1𝐴𝐴 + 𝜇𝜇𝜇𝜇𝜔𝜔0𝐴𝐴 + 3𝐴𝐴2𝐴̅𝐴 = 0  .  (21) 

For the steady state case, 𝐷𝐷1𝐴𝐴 = 0 and from (21), 
the complex amplitude 𝐴𝐴 = 0, which means the real 
amplitude at the first order also vanishes, i.e., 𝑎𝑎 = 0 
or 𝑥𝑥0 = 0. From (20), 𝑥𝑥1 = 𝑓𝑓

𝜔𝜔0
2 and substituting all 

into the approximate expansion (3), the steady state 
solution is a constant solution 

 𝑥𝑥 = 𝜀𝜀𝜀𝜀
𝜔𝜔0
2  .    (22) 

This can be verified by numerical simulations of 
the original equations (1) and (2). In all the numerical 

simulations, MATLAB is used with the subroutine 
ODE45 when integration of the ordinary differential 
equations is necessary. In Figure 1, after the transient 
oscillations decay, the numerical solution tends to a 
constant value which is almost equal to the expression 
given in (22). 

 

Figure 1. Numerical simulation of the 
decaying excitation frequency model  

(µ=0.2, f=1, ω0=1, Ω0=1.05, ε=0.1, λ=0.5) 

 
3. BUILT-IN EXTERNAL EXCITATION 
FREQUENCY  
 

The frequency variation in this case is  

Ω = Ω0(1− 𝑒𝑒−𝜀𝜀𝜀𝜀𝜀𝜀)   (23) 
 
Proceeding in a similar way to Section 2, the 

equations governing the amplitude and phases are 

𝐷𝐷1𝑎𝑎 = −1
2
𝜇𝜇𝜇𝜇 + 𝑓𝑓

2𝜔𝜔0
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠   (24) 

𝐷𝐷1𝛾𝛾 = 𝜎𝜎(1 − 𝑒𝑒−𝜆𝜆𝑇𝑇1) + 𝜆𝜆𝜆𝜆𝑇𝑇1𝑒𝑒−𝜆𝜆𝑇𝑇1

−
3

8𝜔𝜔0
𝑎𝑎2 +

𝑓𝑓
2𝜔𝜔0𝑎𝑎

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, (25) 

where 

𝛾𝛾 = 𝜎𝜎𝜎𝜎1(1 − 𝑒𝑒−𝜆𝜆𝑇𝑇1) − 𝛽𝛽    .         (26) 

For steady state solutions, 𝐷𝐷1𝑎𝑎 = 0, 𝐷𝐷1𝛾𝛾 = 0, 
lim
𝑇𝑇1→∞

𝑒𝑒−𝜆𝜆𝑇𝑇1 = 0, and eliminating the phases, the 

frequency response relation turns out to be 

Ω0 = 𝜔𝜔0 + 𝜀𝜀 � 3
8𝜔𝜔0

𝑎𝑎2 ± 1
2�

𝑓𝑓2

𝜔𝜔0
2𝑎𝑎2

− 𝜇𝜇2� .   (27) 
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Figure 2 displays the response amplitudes 
corresponding to the frequencies.  

 
Figure 2. Frequency response curve (ε=0.1, 

µ=0.2, ω0=1, f=1) 

Such frequency response curves were analysed 
extensively in the previous literature [22, 23]. The 
points A and B correspond to saddle-node bifurcation 
points. The curve AB is unreachable both when 
decreasing the frequencies or increasing them 
gradually. Thus, the portion AB is unstable, whereas 
the rest of the curves correspond to stable solutions. 
This is the well-known jump phenomenon observed 
in hardening-type nonlinearities. When the frequency 
is gradually increased, the response reaches the point 
B, and then a sudden decrease to the bottom curve is 
observed when a further increase is done. When the 
frequencies are decreased, the curve below is 
followed up to point A, and a sudden jump to the 
higher curve is observed for an incremental decrease 
in the frequencies. For hardening nonlinear systems, 
the gradual increases of frequencies lead to a higher 
jump compared to the case of gradual decreases.  

Effects of other parameters on the frequency 
response curves are given in Figures 3-5. In Figure 3, 
as the damping is increased, the responses are lower. 
Figure 4 shows the effect of external excitation 
amplitude on the frequency response curves. As the 
excitation amplitude increases, the responses increase 
with a more profound effect on the jump region. To 
isolate the effects of cubic nonlinearity, one has to fix 
εf and εµ  and vary ε only.  

In Figure 5, the effect of the cubic nonlinearity 
coefficient can be seen. Since the behaviour is of a 
hardening type, the frequency response curves bend 
more to the right as the cubic nonlinearity increases 
without a change in the maximum amplitudes.   

 
Figure 3. Frequency response curves for 

changes in damping coefficient µ=0.3(solid), 
µ=0.5(dashed) (ε=0.1, ω0=1, f=1) 

 
Figure 4. Frequency response curves for 

changes in excitation amplitude f=1.5(solid) 
and f=1(dashed) (ε=0.1, ω0=1, µ=0.25) 

 
Figure 5. Frequency response curves for 

changes in cubic nonlinearity ε=0.1 (solid) and 
ε=0.2 (dashed) (ω0=1, εµ=0.03, εf=0.1) 
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The transient solutions are  

𝑥𝑥(𝑡𝑡) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�Ω0𝑡𝑡 − 𝜀𝜀𝜀𝜀𝜀𝜀𝑒𝑒−𝜀𝜀𝜀𝜀𝜀𝜀 − 𝛾𝛾�,      (28) 

where the amplitudes and phases are governed by 
(24) and (25). For sufficiently long time scales, 
lim
𝑡𝑡→∞

𝑥𝑥(𝑡𝑡) =𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[Ω0𝑡𝑡 − 𝛾𝛾] with the amplitudes and 
phases retaining steady state values. In summary, the 
built-in frequency leads to the classical constant 
frequency solution for long time scales, but the 
transient response differs from the classical solution.   
 
4. HARMONIC EXTERNAL EXCITATION 
FREQUENCY  

 
Real systems may have some fluctuations about 

the mean average frequency. The variation can be 
written as  

Ω = Ω0 + εΩ1cos (𝜀𝜀𝜀𝜀𝜀𝜀)  . (29) 
 

Proceeding in a similar way with Section 2, 
assuming primary resonances, i.e., Equation (8) for 
expressing the nearness of mean external frequency 
to the natural frequency, the equations governing the 
amplitudes and phases are 

𝐷𝐷1𝑎𝑎 = −
1
2
𝜇𝜇𝜇𝜇 

+
𝑓𝑓

2𝜔𝜔0
sin (𝛾𝛾 + Ω1𝑇𝑇1 cos(𝜔𝜔𝑇𝑇1)) 

(30) 

 

𝐷𝐷1𝛾𝛾 = 𝜎𝜎 −
3

8𝜔𝜔0
𝑎𝑎2 

+
𝑓𝑓

2𝜔𝜔0𝑎𝑎
𝑐𝑐𝑐𝑐𝑐𝑐 (𝛾𝛾 + Ω1𝑇𝑇1 cos(𝜔𝜔𝑇𝑇1)) 

(31) 

where 

𝛾𝛾 = 𝜎𝜎𝜎𝜎1 − 𝛽𝛽   .   (32) 

In terms of the original time variable, the 
equations read 

𝑎̇𝑎 = −
1
2
𝜀𝜀𝜀𝜀𝜀𝜀 

+
𝜀𝜀𝜀𝜀

2𝜔𝜔0
sin (𝛾𝛾 + εΩ1𝑡𝑡 cos(𝜀𝜀𝜀𝜀𝜀𝜀)) 

(33) 

 

𝛾̇𝛾 = 𝜀𝜀𝜀𝜀 −
3𝜀𝜀

8𝜔𝜔0
𝑎𝑎2 

+
𝜀𝜀𝜀𝜀

2𝜔𝜔0𝑎𝑎
𝑐𝑐𝑐𝑐𝑐𝑐 (𝛾𝛾 + εΩ1𝑡𝑡 cos(𝜀𝜀𝜀𝜀𝜀𝜀)) 

(34) 

 
Since the harmonic terms in the equations do not 

tend to constant values, one cannot speak of steady 
state solutions. Equations (33) and (34) are 

numerically integrated for the initial conditions 
𝑎𝑎(0) = 2, 𝛾𝛾(0) = 0 (Figure 6).  

 
Figure 6. Amplitude and phase variations in 

time (ε=0.1, µ=0.2, ω0=1, f=1, Ω1 =0.8, ω=1.2, 
σ=0.2) 

 
The amplitudes and phases do not tend to constant 

steady state values. The approximate solution is   

𝑥𝑥(𝑡𝑡) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[Ω0𝑡𝑡 − 𝛾𝛾] ,  (35) 

where the amplitudes and phases are governed by 
(33) and (34).  

A new way of expressing the nonlinear dynamic 
behaviour for differential equations has been 
suggested recently. In the new representation, which 
is called the differential space representation [26], 
three dimensional solution curves are drawn with 
coordinates being the solution function and its first 
and second derivatives. Equation (1) is directly 
integrated subject to the frequency variation (29), and 
the result is given in Figure 7.  

 
Figure 7. Differential space representation of 

the solution curve 
 (ε=0.1, µ=0.2, ω0=1, f=1, Ω0 =1.05,  

Ω1 =0.8, ω=1.2) 
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The initial conditions used are x(0)=1, 𝑥̇𝑥(0) = 0. 
The coordinates represent the function and its 
derivatives 𝑥𝑥0 = 𝑥𝑥,𝑥𝑥1 = 𝑥̇𝑥,𝑥𝑥2 = 𝑥̈𝑥. The chaotic 
behaviour is observed for the solution. Figure 7 
depicts solutions for primary resonances. A secondary 
resonance type is when Ω0 is near to three times the 
natural frequency [22]. For such secondary 
resonances, a completely different chaotic solution 
can also be obtained (Figure 8).  

 
Figure 8. Differential space representation of 

the solution curve 
 (ε=0.1, µ=0.2, ω0=1, f=1, Ω0 =3.05,  

Ω1 =0.8, ω=1.2) 
 

 
5. CONCLUSIONS  

 
The external excitation frequency may change 

during oscillations of the nonlinear systems. Three 
different variation cases are considered in this study 
with primary resonances of the system. Approximate 
analytical solutions are derived using the Method of 
Multiple Scales. The decaying and built-in type 
variations lead to steady state solutions, while the 
harmonic fluctuations about a mean frequency lead to 
chaotic solutions. Therefore, it is concluded that the 
harmonic fluctuations of the excitation frequency are 
more dangerous and unpredictable than the 
continuous gradual decrease/increase of the 
excitation frequency.  

In this work, cubic nonlinearities are considered. 
Other types of nonlinearities may also be considered. 
A detailed analysis of the sensitivity of all the 
parameters involved may also be performed. Control 
algorithms to suppress the unwanted vibrations may 
also be investigated. An extensive treatment of the 
chaotic behaviour and the range of parameters for 
such motions to occur are left for further studies.  
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