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Abstract: - This paper focuses on the accuracy of detecting the location of a complexly shaped damage 
present in a cantilever beam. The study is carried out by involving the finite element method. At first, we 
have parametrically described the geometry of a branched crack and designed its discrete model. As a 
further step, we performed simulations to observe the changes in the static and dynamic behavior of the 
beam that occur in the presence of damage. Several types of Y-shaped cracks have been taken for these 
analyses. We have shown the beam has a diminished capacity to store energy and consequently the 
frequency decreases. The frequency shift phenomenon for the first mode of vibration was found to be in 
concordance with the changes in the deflection of beam’s free end. We derived on this basis a correction 
coefficient that considers the beam deflections in the intact and damaged state. This coefficient permits 
predicting the frequency shift due to a given crack. As the last step, we have successfully compared the 
frequencies achieved directly using the FEM with those for the intact beam to which the correction 
coefficient was applied. 
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1. INTRODUCTION 
 

Damages reduce the capacity of the beams to store 
energy because the slices where damage is present are 
subject to stiffness decrease. As a consequence the 
natural frequencies of damaged beams decrease [1]-
[5]. The frequency decrease depends on the reduction 
of the cross-sectional area, hence on the crack depth, 
but also on the crack position [6]-[8]. For transverse 
cracks, either open or breathing, mathematical 
relations which permit predicting the frequency drop 
if the crack depth and position are known exist and 
are widely presented in the literature [9]-[12]. Most 
mathematical relations were derived empirically, 
from the fracture mechanics theory, and are 
applicable just for particular cases [13]-[14]. Our 

research has been focused on finding a mathematical 
relation with a large degree of generality, and we have 
succeeded in creating a relationship that can be 
applied to any beam-like structure if it is subject to a 
transverse crack [15]-[17].   

Our latest research focuses on branched cracks, 
which have a more complex geometry, and therefore 
their effect on the natural frequency changes is 
influenced by more parameters, increasing the 
approaches difficulty.   

This paper presents a numerical study destined to 
find the dynamic response of beams with Y-shaped 
cracks, in particular the effect of the position of the 
transverse crack component relative to the 
longitudinal crack component.  
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2. MATERIALS AND METHODS 
 

2.1. The test structure 
 
The research aimed finding the effect of a 

branched crack on the natural frequencies of beam-
like structures. To this aim, a steel beam, fixed on the 
left end and free at the other one (i.e. a cantilever 
beam) is considered in the study. It has the following 
key dimensions: the length 1000mmL  , the width 

50mmB   and the thickness 5mmH  . Thus, the 

intact beam has a cross-sectional area 2250mmA   

and the moment of inertia 452083.33mmI  . 

 
Table 1. Physical-mechanical properties of the structural 

steel used in the study 

Mass 
density 
[kg/m3] 

Young 
modulus 
[N/m2] 

Poisson 
 ratio 

[-] 

Tensile 
strength 
[MPa] 

Yield 
strength 
[MPa] 

Min. 
elongation 

[%] 

7850 2ꞏ1011 0.3 
470-
630 

355 20 

   
The relevant physical-mechanical properties, 

presented in Table 1, are extracted from the ANSYS 
library for a structural steel. 

 
2.2. Branched crack geometry 

 
For the damaged beam cases we considered the Y-

shaped crack geometry with two components: (*) in 
the transverse and (**) in the longitudinal direction. 
The transverse crack component extends from the 
upper surface to the longitudinal crack component, as 
presented in figure 1. We consider the particular case 
of a longitudinal crack extent (i.e. ==90) of length 

50mml  , located at depth 2.5mma   in the beam. 

The left end of the longitudinal crack component is 
located at distance 20mmx   from the fixed end. 

The values chosen for this parameter are indicated in 
table 2, along with the other main dimensions of the 
damage. 

 
Figure 1. The geometry of a branched crack of Y-shape 

The transverse crack component is located at 
distance d from the fixed end, the limits being: 

mind x  and maxd x l  . 

 
Table 2. Dimensions of the Y-shaped crack 

a 
[mm] 

l 
[mm] 

α 
[] 

    
[] 

x 

[mm] 
2.5 50 90 90 20
 
The transverse crack component is iteratively 

removed between the limits dmin and dmax. 
 

2.3. The Finite Element Model of the test 
structure 

 
The boundary conditions for the fixed end at the 

left extremity of the analyzed beam are imposed by 
applying the fixed support constraint. For the static 
analysis we applied a gravitational acceleration of 
9.81 m/s2. 

  

 
 

Figure 2. View on the intact beam with applied boundary 
conditions and gravitation 

 
A fine mesh was chosen for the steel beam, the 

hexahedral elements having defined the maximum 
size of an edge by 2 mm, see Fig. 3. In consequence, 
the intact beam has resulted in a model containing 
43587 elements and 231639 nodes. 

 
         
 
 
 
 
 
 
 
 

a) 
 
 

 
 
 
 

               
b) 
 

Figure 3. A zoom on the left beam end, for the intact 
beam (a) and damaged beam (b), highlighting the similar 

prismatic element’s distribution 
 
As it can be remarked from figure 3.b, the 

prismatic elements are deformed in the interface zone 
of the intact beam and damage boundary element 
resulting in an even finer mesh. 
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In addition, the defect location was replaced by a 
segment of reduced thickness / 2h H , thus a 
smaller stiffness (see Fig. 4).  
  
 

 
                 
 
 
Figure 4. A zoom on the segment with reduced thickness 

 
To compensate the loss of mass we increased the 

mass density of the segment to 3ˆ 15700 /kg m  . 
 

2.4. Test procedure 
 
The beam static and dynamic behavior is analyzed 

by means of the finite element method (FEM). Two 
types of simulations were performed: 
- static analysis, involving the STATIC 
STRUCTURAL MODULE, made in order to find the 
deflection of the free end; 
- dynamic analysis, employing the MODAL 
MODULE, made in order to find the natural 
frequencies for the weak-axis bending vibration for 
the first mode.  

For all studies we have iteratively removed the 
transversal crack component by a step of 5mmd 
along the longitudinal crack component. The first 
position is at left side of the longitudinal crack 
component, at min 1 20 mmd d  , while the last one 

is at its right end, at max 11 70 mmd d  , as shown in 

figure 5. Also, the beam with reduced cross-section, 
nominated herein as the beam with a gap, is implied 
in this study. 

 

 
 

Figure 5. Positions of the transversal crack 
 
The acquired results are deflections of the free end 

under dead load  and frequencies f. From [18] and 
[19], the deflection D  achieved at the free end of the 

damaged beam is: 

4

*8
D

eq

g A L

EI

   
                      (1) 

while for the intact beam it is: 

4

8U

g A L

EI

   
                         (2) 

The beam, in accordance to the Euler-Bernoulli 
theory [20], has the frequencies of the bending 
vibration modes 1...i n  expressed as: 

2

42
i

i

EI
f

AL


 

                       (3)  

 After substituting Eq. (1) and (2) in Eq. (3), 
and performing simple mathematical calculus, one 
obtains: 

2

2 8
i

iU
U

g
f


 

                            (4)  

and 

 
2

2 8
i

iD
D

g
f


 

                            (5) 

  The natural frequency of the 
damaged beam results, from Eq. (4) and Eq. (5), as: 

( , )U
iD iU iU

D

f f a l f





                    (6) 

where (a,l) is the correction coefficient. 
In consequence, the relation of the normalized 

frequency shift can found as: 

( , )D UiU iD
i

iU D

f f
f a l

f

 





           (7) 

which is, in fact, the damage severity if the damage is 
located at the fixed end of the cantilever beam. 

Knowing the deflection of the free end for both 
healthy and damaged beam, we calculated the 
correction coefficient and afterward the frequency of 
the damaged beam in respect to the natural frequency 
of the intact beam, in accordance to Eq. (6). The 
results were compared with the frequencies of the 
damaged beam obtained directly from the FEM 
analysis, in order to prove that it is possible to use the 
correction coefficient (a,l) and the severity ( , )a l  

also for Y-shaped cracks. 
 

3. Results and discussions  
 
To profoundly understand the correlation between 

the frequency shift phenomena and the changes in the 
deflection of beams that occur due to different 
damage types, we compared for several scenarios of 
Y-shaped damages the frequencies obtained from the 
modal analysis with those from Eq. (6) supported by 
static analysis. 

Loss of stiffness & higher density 
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As a further step in the research, we compared the 
outcomes for the Y-shaped crack with the results 
achieved from a beam having a rectangular gap with 
dimensions: depth a  and length l, equal to that of the 
crack.  

 
3.1. Deflection at the free end 

 
The deflection of the free beam end is calculated 

for the dead load mass, meaning a linearly distributed 
mass m A . The results are presented in Table 3. 

 
Table 3. Deflection of the beam’s free end 

d 
[mm] 

U 

[mm] 
D 

[mm] 
(a,l) 

[-]
20 

22.948 

50.698 0.6727
25 50.675 0.6729
30 50.673 0.6729
35 50.673 0.6729
40 50.673 0.6729
45 50.674 0.6729
50 50.677 0.6729
55 50.68 0.6729
60 50.685 0.6728
65 50.714 0.6726
70 50.715 0.6726
gap 50.874 0.6716

 
3.2. Comparison of frequencies achieved by 
FEM and after applying the correction term 

 
The frequencies for the first mode of vibration 

where obtained by means of finite element analysis 
and compared to those calculated by using the 
original relations between deflection and natural 
frequency changes for the 11 positions of the 
transversal crack. The results, as well as the attained 
errors are presented in Table 4. 

 
Table 4. Comparison of frequencies obtained directly 
from FEM and calculated involving the hybrid method 

d 
[mm] 

fiU  
[Hz] 

fiD_FEM 

[Hz] 
fiD_hybrid 
 [Hz] 

Error 
[Hz]

20 

4.088 

2.7351 2.7503 0.55%
25 2.7359 2.7509 0.55%
30 2.736 2.7510 0.55%
35 2.7359 2.7510 0.55%
40 2.7362 2.7510 0.54%
45 2.7361 2.7510 0.54%
50 2.7361 2.7509 0.54%
55 2.7358 2.7508 0.55%
60 2.7358 2.7507 0.54%
65 2.7352 2.7499 0.54%
70 2.7339 2.7498 0.58%
gap 2.7311 2.7455 0.53%

 

The diagram obtained emploing both the FEM and 
the hybrid FEM-analtical methods are presented in 
figure 6. 
 

 
Figure 6. Comparison of frequencies obtained by FEM 

modal analysis and involving the hybrid method 
 
Further, we compared the modal FEM analysis 

and calculated results of the different damage position 
with that of the gap study. The results are presented 
in Table 5.  

 
Table 5. Comparison of frequencies obtained for the 

beam with a gap and subject of Y-shaped cracks 
FEM Calculated

fi_GAP 
[Hz]

fiD 
[Hz]

Err. 
[%]

fi_GAP 
[Hz] 

fiD 
[Hz]

Err. 
[%]

2.7311 

2.7351 0.15

2.7455 

2.7503 0.17
2.7359 0.18 2.7509 0.20
2.736 0.18 2.7510 0.20

2.7359 0.18 2.7510 0.20
2.7362 0.19 2.7510 0.20
2.7361 0.18 2.7510 0.20
2.7361 0.18 2.7509 0.19
2.7358 0.17 2.7508 0.19
2.7358 0.17 2.7507 0.19
2.7352 0.15 2.7499 0.16
2.7339 0.10 2.7498 0.16

 
From Table 4 and Fig. 6 one can observe that 

comparing the frequencies obtained directly from 
FEM and calculated involving the hybrid FEM-
analytical method the errors are less than 0.6%. This 
proves the precision achieved by using the correction 
coefficient (a,l) and qualifies the method for 
prediction of frequency changes due to Y-shaped 
cracks with known parameters.  

Table 5 shows that the beam with a gap instead of 
the Y-shaped crack can substitute the crack in 
modeling the dynamic behavior of damaged beams. 
The error noticed here is less than 0.2%, both for the 
FEM and the hybrid methods. From prior research we 
know the frequency shift curves for beams with a gap 
[21], which can be successfully used also for Y-
shaped cracks. 
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4. CONCLUSIONS  
 

In this paper, we analyze the effect of a Y-shaped 
crack with two components (one transverse and the 
other longitudinal) on the free end deflections and 
natural frequencies of a cantilever beam. Also, a 
beam with reduced stiffness and increased mass 
density (nominated gap in this paper), which 
compensates for the loss of mass due to cross-
sectional area reduction, is considered. The position 
of both discontinuities is the same, these being 
located near the fixed beam end. The analysis was 
performed by means of numerical simulation. 

We found that the Y-shaped crack produces a 
significant frequency drop compared to the transverse 
crack of same depth. Regarding the position of the 
transverse crack component relative to that of the 
longitudinal crack component, this has a limited 
influence on the natural frequencies and free end 
deflections. We derived on this basis the relation for 
a compensation coefficient that permits evaluating 
the frequency change with high precision (error less 
that 0.5%) 

Moreover, we found the beam whit a gap having 
the same depth and position as the Y-shaped crack 
produces similar deflection and frequency drop, 
respectively. This qualifies it to be used for assessing 
Y-shaped cracks.  
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