In-Plane Free Oscillations of Suspended Chains
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Abstract: - Chain dynamics are of particular interest in high-voltage power lines, as chain drives in cars’
motors, motorcycles, maritime anchoring of ships, and even some bridge suspensions. The equilibrium and
linear oscillations of a heavy, homogeneous chain made of identical rigid links, suspended between two
fixed points at different heights, are investigated. The problem of the equilibrium position of each link is
solved using an original algorithm based on Lagrange multipliers, being followed by some relevant
numerical examples. The chain is in a gravitational field, and the kinetic energy and force function are
deduced as an original compact formula, valid for any number of links. We obtained the Lagrange equations
with motion constraints imposed by the fixed positions of the two ends of the chain. The free oscillations
in the vertical plane passing through the hanging points are deduced, and several numerical examples are

presented.
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1. INTRODUCTION

The study of chain dynamics plays an important
role across a variety of fields, from engineering and
marine applications to natural sciences and art. In
engineering and infrastructure, understanding the
behavior of chains and cables under different loads is
essential for designing stable, durable structures like
cable-stayed and suspension bridges. The basic
models are presented in ref. [1], [2]. These structures
rely on cables that must withstand environmental
conditions such as wind and vibrations, which can
induce complex behaviors including self-contact,
making it crucial to analyze their dynamics to ensure
safety and performance. For instance, in ref. [3] the
authors explored how wind-induced vibrations affect
cables, emphasizing the need for thorough analysis to
prevent structural failures. Similarly, in [4] the impact
of geometric nonlinearity on the behavior of cables is
studied, thus demonstrating how even slight changes
in cable curvature can significantly alter their
dynamic response, which is critical for bridge
stability. It is known that chains and cables are
fundamental components in mechanical systems like
cranes, elevators, and conveyor belts, where accurate
knowledge of their behavior helps optimize load
distribution, reduce wear, and prevent mechanical
failures. In ref. [5] Predoi et al. investigated the

dynamics of elastic cables used in cranes. H. N.
Arafat and A. H. Nayfeh [6] examined how primary
resonance excitations can lead to unexpected
vibrations in suspended cables, highlighting the
importance of understanding dynamic responses to
design safer and more reliable mechanical systems.In
the field of marine and offshore engineering, chains
are extensively used in mooring lines to anchor ships
and offshore platforms. These chains and cables often
experience self-contact due to currents, waves, or
motion, affecting their performance and durability.
Studying their dynamics allows engineers to predict
how these chains will react under various sea
conditions, which is vital for maintaining the stability
of these structures. In ref. [7], the writhing dynamics
of cables with self- contact was investigated,
reinforcing how external forces, such as currents and
waves, can lead to complex behaviors that impact
performance, especially in mooring applications.
Additionally, understanding cable dynamics is crucial
in the design of subsea pipelines and communication
cables, ensuring they can endure the harsh underwater
environment without damage.

Beyond engineering, chain dynamics provide
insights into natural phenomena. The study of wave
propagation and vibration patterns in chains can
provide insights into other physical systems, such as
seismic waves and the behavior of flexible structures
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in nature. For example, studies like those in [8] and
[9] modeled and analyzed the nonlinear vibrations in
suspended cables, thus demonstrating how these
behaviors can help understand complex wave
phenomena, such as seismic activity and energy
distribution in flexible structures. Additionally,
chains are often used in simulations to model
complex systems, aiding scientists to understand how
energy disperses and how different forces interact
within a medium.

The dynamics of chains extend even into art and
architecture, where flexible chains and cables are
used in innovative designs. Kinetic sculptures and art
installations use the movement of chains to create
visually striking patterns, and a deep understanding
of their dynamics allows artists to achieve controlled,
predictable motion. For instance, kinetic artist
Alexander Calder [10] pioneered the use of mobile
structures that respond to airflow, with the movement
of flexible elements playing an important role in their
aesthetic appeal. In modern architecture, flexible
chains and cables are used to create lightweight,
tension-based structures like stadium roofs and
tensile pavilions, enabling architects to blend
functionality with creativity.

Furthermore, the study of chain dynamics has
practical benefits, such as vibration reduction and
noise control. By understanding how flexible
elements behave, engineers can design systems that
minimize unwanted vibrations, improving comfort
and safety in various applications, from vehicles to
industrial machinery. Recent advancements have also
explored the potential for energy harvesting from the
vibrations of chains and cables, combining principles
of chain dynamics with sustainable engineering to
develop new ways of generating renewable energy
from wind and waves. In ref. [11], are described the
effects of wind-induced forces on shallow cables,
offering insights into how vibrational energy could be
harvested for power generation. These developments
are part of a growing field where engineers are
innovating ways to convert mechanical vibrations
into electrical energy, improving the efficiency and
sustainability of renewable energy technologies.

Previous studies, such as [9], have investigated the
equilibrium position of an extensible but perfectly
flexible cable, highlighting the importance of
considering extensibility, due to the fact that
significant differences in the cable’s shape arise
depending on whether it is treated as extensible or
inextensible.

Overall, the diverse applications of chain
dynamics highlight its significance across multiple
disciplines. Whether in engineering, natural sciences,
or the arts, a deeper understanding of how chains and
cables interact under various forces enables the

development of safer, more efficient, and more
innovative solutions. By addressing complex
behaviors like vibrations and self-contact, researchers
and engineers can continue to push the boundaries of
design and functionality.

In this paper we examine the equilibrium position
and free oscillations of a heavy, homogeneous chain
of n links, totaling a length L. and suspended between
two fixed points, A and B, which are positioned at the
same or at different heights. The chain is subjected
only to the gravitational field. The main contributions
of this paper consist in: a) a validated algorithm and
computer code providing the equilibrium position of
the chain using the Lagrange multipliers; b) a general
formula for the kinetic energy and force function for
a chain made on any number of links; c) the natural
modes of vibration obtained by two methods,
validating the results.

The paper is organized as follows. After this
introduction, section 2 briefly presents the catenary
equation as being the limit case for a large number of
chain links. Next, we present an algorithm that
determines the chain’s equilibrium position by
formulating and solving the equilibrium equations
with Lagrange multipliers, which minimize the
position of the mass center. The resulting equations
describe the chain’s equilibrium by specifying the
position of each link at rest. Each scenario is
compared with the classical catenary solution.
Section 3 focuses on the dynamics of a chain with
both ends attached. We deduce general formulas for
the kinetic energy and the force function, and then we
employ the nonholonomic Lagrange differential
equations of the second kind in two illustrative
examples. Conclusions and an appendix are ending
the paper.

2. EQUATIONS OF EQUILIBRIUM

2.1. The hanging cable as a limiting case of
a chain

The catenary mathematical model is used for
hanging cables, assuming perfect inextensibility, but
no bending stiffness. The chain is inextensible, but
each link is rigid, with ideal hinges between links.
These differences require a detailed analysis.

The mechanical tension T developed in the cable

at the position vector 7 (s)of it, defined by the arc

length s along the cable, under the action of externally
applied distributed forces p, can only be along the
tangent to the «cable: T=T7 in which

_ dr dx—- dy- dz—- .
T=—=—Ii+—j+—k is
ds ds ds ds

tangent to the curve (cable). Equilibrium of the

the unit vector
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perfectly flexible and inextensible element of arc dis
of the cable implies a vector equation:

T(s+ds)—T(S)+pds=0 , (1)
from which, after simplification by ds, leads to [12]:
d(Tt
da(r7) +7=0. 2)
ds

Figure 12. Element of cable at equilibrium

This differential equation can be integrated (See
Appendix 1) and the equilibrium position of the
heavy cable hanging in gravitational field is [12]:

yza(chﬁ—lj 3)

a

in a translated coordinate system with the origin O at

the lowest point of the hanging cable, with 4 = i,
mg

m the mass per unit length, g the gravitational
constant, H the horizontal component of the local
tension 7 in the cable. If a chain of length L is
suspended between two points A and B having the
horizontal coordinates x; and x, a horizontal distance
d between them and a vertical distance /4, then the
following equations must be fulfilled:

h
coshx—z—coshﬁ=—
a a a
. . L
s1nhﬁ—s1nhﬁ:— . )
a a a
X, —x =d

This system of nonlinear equations yields the
following nonlinear equation, which can be solved for
the parameter a using MATLAB [13] script described
in section 3.9.7 of ref. [14]:

d_L-h

cosh— = >
a 2a

+1. %)

In the translated reference frame with origin in O
, the cable’s lowest point, one end of the cable lies at
x:<0, while the other end, separated by a horizontal
distance d, lies at x»>0 and is elevated by a distance 4
relative to the first end. An approximate formula for
the moderately tensioned catenary was deduced by
Predoi et al. [15].

For a chain with many links, eq. (3) is expected to
predict the link positions relatively accurately.
However, in the following section, we compare the
equilibrium positions of a chain having a relatively
small number of links, which is a problem similar to
a mechanism [16] or a simple robot [17] but with
constrained motions, and prove that the similarities
are valid only for a large number of links.

2.1. Equilibrium position of a hanging chain

The equilibrium position of a hanging chain with
a small number of links was previously investigated
by Nakagiri [18], using Lagrange multipliers and an
iterative solving method. We consider also the
equilibrium position as corresponding to a minimum
with constraints of the mass center, but we derive a
different numerical algorithm to solve the problem.

Let us consider a number of # links, each of mass
m and length /. When n=2 or n=3, the static
equilibrium equations for ideal rods can solve the
problem, and these cases serve as validation for the
current approach. On the other hand, when n is
relatively large, e.g. n > 20, the catenary solution can
be used to approximate the positions of the links, and
this scenario also serves as a validation benchmark.

Figure 13. Configuration of three chain links

For an intermediary number n of links, we
consider the notations from Figure 2, measuring each
link’s angle from the horizontal direction in order to
simplify the comparisons with the catenary position.

The mass center of a number »n of identical links,
each of length / is proven to be:

l n

:EM [2(;1—i)+1}sin¢)i. (6)

Ve

This formula was obtained by complete induction
starting from simple cases such as n=2, 3, 4 ...; for
[sing,

instance, when n=1, we obtain y,, = , and so

on. A chain suspended between two fixed points
O(0,0) and A(d,h) where A is horizontally displaced
by d and elevated by 4 relative to O must comply to
the following supplementary equations, representing
these two conditions (Figure 2):
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< d <. h
;COS(/)I l’ ;Slnwl l N (7)
The static equilibrium position is minimizing the
position of the mass center. The derivative of the
function ®(¢; ... pn), which depends on the angles ¢;
must cancel, accounting for the restrictions from eq.
(7) using the Lagrange multipliers A and p [19]:

o=l (2n—2i+1)sing,
2n“5
. J : . ®)
-1 cosQ, —— |— sing, ——
(oo o{ St
The following n equations are obtained:
2n—-2i+1 .
n—”coswﬁﬁsmgo[—ycosq)izo, i=l.n (9)

2n

complemented by the two conditions (7) which agree
with the results from ref. [18], but obtaining the
solution follows a different algorithm.
The following algorithm was adopted to solve this
nonlinear system of equations:
e from the last two equations of (8), that is, for
i=n-1 and i=n, the following were obtained:

_ 1 3cosg,  sing, —cosy,sing,
2n sin((pn —(p,H)

e
tan @, 2n

e the remaining n equations (9) were solved using
our numerical solver script in MATLAB [13].

To illustrate this, we consider the chain parameters
shown in Table 1, in which n represents the number
of links. Since for the same n we present several
geometrical configurations, the number 7 is repeated.
These include the resulting values for the catenary a,
and the end point coordinates x;, and x,, with the
origin placed at the catenary’s lowest point.

(10)

Table 3. Numerical examples of hanging chains

n (links) |/ (m) |d(m) |h(m) | a(m) x1(m) x2(m)
3 0.1 0.1 0 0.0176 | -0.050 | 0.050
3 0.1 02 |0 0.0616 | -0.100 | 0.100
3 0.1 0.1 0.05 [0.0178 | -0.047 | 0.053
4 0.1 0.3 0 0.0178 | -0.047 | 0.053
5 0.064 | 0.3 0 0.2395 | -0.150 | 0.150
5 0.1 0.3 0.1 ]0.0834 |-0.1331 |0.1669
6 0.1 0.3 0.1 ]0.0697 ]-0.1383 |0.1617

The validation examples are for 3 link chains,

under different configurations: one with the distance
between the suspension points equal to the link length
[/ and another with a double distance between the

suspension points 2/ (Figure 3 a, b). Both cases have
the suspension points at the same height (4=0), for
which the solutions can be obtained by geometrical
means, without using any of the above equations.
The third example (Figure 3c) considers a height
difference of [/2 between the hanging points.
Although a pure geometrical solution exists and was
used for validation, the usefulness of the presented

algorithm will be obvious for a larger number of
links.

Figure 14. Equilibrium position of a simple three link
chain (red) and a catenary (dashed blue) for the first three
cases indicated in Table 1

More complex examples are illustrated in Figure
4, where the equilibrium positions of 4, 5, 5, and
6-link chains (shown in red) are overlaid on the
catenary curve of the same length and attachment
points. The example with 5 symmetric links was
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introduced for comparison with ref. [18], which
proves to be excellent. The efficiency of the proposed
algorithm is clear, especially in cases with height
differences (h#0) between the hanging/attachment
points.

As the number of links increases, it is obvious that
the equilibrium positions tend to those of the catenary
with the same length and suspension points. For
example, in the case of 5 links with h=0 (Figure 3 b),
the catenary is almost covered by the chain links.

In general, however, the existence of only an
approximate overlaid of the chain links positions over
the catenary proves the utility of the present study,
since a cable model cannot be applied directly in such
cases.

Table 4. Links angles with the vertical direction for the
chain cases from Table 1.

n| 0:(°) 600|650 | 04(°) | 05(°) | O5(°)
3]0 90 180 |- - -
3030 |9 150 |- - -
3398 | 11997 [ 17631

4 [ 3616 | 65487 | 11451 | 14383 | - -

5 | 61.488 | 74.804 | 90.000 | 105.19 | 11851 | -

5 [ 2952 | 60.490 | 12235 | 15138 | 161.74 | -

6 | 19.01 | 34.733 | 90.998 | 14590 | 161.19 | 167.18

In the following section, some dynamic aspects of
the chain behavior will be investigated, with
emphasis on the free oscillations for small
displacements about the equilibrium position.

The obtained angles of each link of the chain
defined in Table 1, relative to the vertical direction
(6;) are indicated in Table 2.

3. DIFFERENTIAL EQUATIONS OF
MOTION IN THE VERTICAL PLANE

The chain is made of # identical links, of length /
and mass m, all being in planar motion. Even if the
two extreme links are rotating about fixed hinges,
these extreme links can be considered to be in planar
motion, from the point of view of the kinetic energy

J0* 1, . . ooml s, P (1Y
E =22 =_(JC92+mvé) since—6° =m| —6" +| -0
2 2 3 12 2

The kinetic energy and the force function for a
serial mechanism is done in most classical textbooks
of Mechanics, but in general for only two links. The
classical example of Lagrange equations is applicable
for serial robotic arms where one end is hinged, and
the opposite end is free.

For compatibility with such existing models, the
angle made by the links with the vertical direction:

0= %— @ (the complement angle of @), will be used

hereafter. Also, the Oy axis will be directed
downwards as the orientation of the gravitational
force.

Figure 15. Equilibrium position of a chain (red) with 4, 5,
and 6 links and the associated catenary (dashed blue), for
the last four cases from Table 1.
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We have written the kinetic energy and force
function for an increasing number of chain links. The
first link is hinged to a fixed hinge, then successively
other links are added, each hinged to the end of the
open chain.

For a chain of n links as defined in Figure 2, we
have deduced by complete induction the following
formulas for the kinetic energy and force function:

E:mleBi[s(n—i)ﬂ]Qz

i=1

+§ i [2(’1—1)“1‘2@ COS(QJ _9")}

i=1 j=i+l

n 1
U =mgl —i+— 0.
mg {Z[n I 2)005 ,}

i=1

(11)

In the force function, the angles 6; are considered
to be approximated by the static equilibrium values
60, negligibly affected by the small oscillations.
These formulas can be used as such, in writing the
Lagrange equations, but only if the last chain link (of
index n) has a free end, allowing the chain to be
vertical in the equilibrium position.

However, we are interested in writing the
differential equations of motion for the chains with
both ends attached to ideal hinges. This means that
geometrical conditions expressed by equations (7)
must be enforced. For small displacements, the
equations (7) can be transformed into conditions for

angular velocities and angular accelerations,
respectively:

Zéicosé’FO; Zé’isinﬁizo

i=1 i=1 (12)

anel cosd, =0; Zn:GI sin 6, :O.
i=1 i=1

The Lagrange differential equations of second
kind are nonholonomic:

d| oE oF oU

Bl ) e AR ) -

dt(aqk] g, g, AR )
k=1,..,n

Another possibility is to reduce the number of
independent generalized coordinates by expressing 7-
2 of them as a function of two selected generalized
coordinates using the system of equations (12).

In fact, the two kinematic equations, for velocities
or accelerations, reduce by 2 the number of degrees
of freedom of the chain. It is obvious that the 3-link
chains shown on Figure 3 have only one degree of
freedom.

As an example, for a 3-link chain, with small
displacements about the equilibrium position of each
link, the angular velocities and accelerations of links
2 and 3 can be expressed as a function of the angular
velocity and acceleration of the first link:

[ sin(6y,—6,) |
0, sin(6,, —0y) | .
[éj: sin 2010 ; g
| sin (920 30)
[ sin (6’30 o) |
(
sin (6~ 6x)

(

(14)

Q:

20 30)

010 )
620 30)

The notations 6y , i=1,2,3 indicate equilibrium
angles, relative to which each link oscillates.

In this manner, a chain with three links is reduced
to a mechanical system with one degree of freedom.
This simple case will be analyzed in the following
section, providing closed form solutions.

6, sin
6.7 sin

Sl

4. FREE OSCILLATIONS OF CHAINS IN
THE VERTICAL PLANE

We consider in the following the particular case of
a chain with 3 links, each of length / and mass m, with
both ends fixed as shown in Figure 3.

The general formulas (11) that we deduced for the
kinetic energy and force function for a chain with »
identical links are applied in this particular case:

2
E_%[SQ . J05 +3660,c05(6,-6)

+6,6, cos(6, —6?1)+926?3 cos (6 _92)] (15)

U =m7gl(500s91 +3c0s 6, +cosb,)
The following notations will be used in writing the
Lagrange differential equations:
Ay, =c0s0,y; A, =cosb,y; A5 =cosb;;
Ay =sinb; 4, =sinb,; A,y =sinby;
Cyy =c08(By 06y );Csy =cos (G — 6, );
Cyy =cos(6y, —by).

(16)

From eq. (13), one gets the nonholonomic

. oF,
coefficients: AAj =k

J 0=0;

which are used in (16),
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leading to the following system of differential
equations:

9+ c219 739 =‘75§91cos910+ﬂ1A11+12A21
%Cﬂél +—é %6’3 =_—3§92 c0s Oy, + L4, + L4y,
| (17)

2C3,9 Cy 5.4, + 0 0 . cos by + A Ay + Ay Ay

6, cosf,, + 6’2 cos 020 + 93 cos 930 =0

6,sin ), + 6, sin 6, + 6, sin O, = 0

In fact, the last two constraints equations can be
used as in eq. (14) relating two angular velocities to
the third one and similar for the angular accelerations.

Case 1

As a first example, we investigate the free
oscillations of the chain defined in the first row of
Table 1: n=3, d=I, and h=0. Because the system
consists of two rotating links and one translating link
in the middle, a simple analytical solution can be
obtained and wused to validate the following
procedure. The equilibrium position is obvious:
010=0, 0=1/2, O3= m, with angles determined in the
trigonometric positive convention. The angular
velocities and accelerations are obtained using
formulas (14) with the obvious case 0/0 leading to
null angular velocity and acceleration, as seen from

eq. (12).

sin(O)

SHatm LS o

sin(7/2)

Using these last results, the kinetic energy and
force function become:

E_m12

5 3912, U—ngl(4c059)+Const

(19)

Assuming harmonic motion of amplitude 4,
angular frequency w, initial phase £, and motion
about the equilibrium position:

H(t) =4 exp(ia)t + [ ) , the angular frequency of the

small amplitude oscillations in this case can be
obtained:

(20)

This result will be used to validate the solution
obtained by Lagrange equations with constraints. The
coefficients from eq. (16) in which the chain’s links
angles from Table 2 are injected become:

Ay =1 4,=0; 4;=-1;
4,=0;4,,=1; 4,,=0; 21
G, =0;C,=-1; G, =0.
The differential equations are in this case:
7. 1.
a)—6,——6, ————0 +
(@) 26— ;
4 ..
(5) 30~
1. 1. g (22)
c)=0,——0,==0,-
( ) 33 TN Ty 4
(d) 91 _93 =0
() 6,=0
It follows from (22-d) that the angular

accelerations of the first and last link are equal. Also
0,=4,=0. From (22-a) and (22-c), A; can be

_bg
577
confirming the solution obtained above, using a
different approach.

cancelled and it will be determined: ®°

0,05

v (m)

x(m)

Figure 16. Free oscillations in case (1) of a three links
chain.

Case 2

The second example investigates the free
oscillations of the chain defined in the second row of
Table 1: n=3, d=21, h=0, where the middle link is no
longer in translation. However, an analytic solution
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can be obtained by standard methods. We use the
deduced algorithm for the equilibrium position: ;=
/6, 620=m/2, 03= 51/6, with angles determined in the
trigonometric positive convention. The angular
velocities and accelerations are obtained using
formulas (14):

24)

Constant C; is not relevant for the oscillation
problem and is only contributing to the equilibrium
position. The angular acceleration obtained in this
case is:

@ = 23g (25)
3 1
The second approach is to use the Lagrange
equations with constraints. The coefficients from eq.
(16), in which the chain’s links angles from Table 2
are injected, become:

3 3

A, =—; 4,=0; 4, =——;
11 2 12 13 2
1
4y ZE; Ap =1 Ay =—; (26)
1 1 1
Ch=—;C=——;C,, =—.
AT T T R Ty
The differential equations are in this case:
T 3. 1 S\f NG}
(a) 591 +Z€2 —293 == go9 ﬂ,l—-l-iz—
3. 4. 1.
(b) —01+§02 +Zt93 :iz
1. . 1. A3 NE) 1
() 401‘*‘ 92‘*‘3‘93:7%‘93_417*'325 27
G

( ) _‘91 76’320

2
(e) 9+9+ 9 0

It follows from (27-d) that near the equilibrium
position, the angular velocities and accelerations of
the first and third link are identical. From (27-¢) the
angular velocity and acceleration of the second link is
equal but in opposite direction with those of the first
and second link. From (27-b) can be obtained

A= —%é . Summing the equations (27-a) and (27-c),

one gets:

(28)

3. g
591 Z—\/§7€1

Obviously, for harmonic motions, the angular
frequency in this case is @” = ;f & | confirmed by

formula (25), and the natural mode is shown on
Figure 6.

Figure 17. Free oscillations in case (2) of a three links
chain.

The use of n Lagrange equations with two
constraints is more general than reducing the system
to one degree of freedom, preferable for chains with
more links.

The two investigated cases use the same chains,
only the horizontal distance between the hanging
points is doubled. As a direct consequence, the non-
dimensional natural frequency obtained in the first

case: Q = wl\/z:\ﬁzl,ogﬂs , 18 reduced in the
g 5
second case to Q,= a)z\/z = ,/—Z\f =1.07457.
g

As is well known, a decrease in the natural
frequency of a given mechanical system indicates a
reduction in its mechanical stiffness. In this analysis,
the reduction of stiffness in case 2 is attributed to the
motion of the central link, for which the mass center
is moving less than in case 1, along the vertical
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direction. Moreover, while one of the lateral links
raises its mass center, the other lowers it, which does
not occur in the links of case 1.

5. CONCLUSIONS

The analysis of the chain's equilibrium position
and small oscillations with respect to this equilibrium
position is addressed in this study.

The equilibrium position of the n-link chain was
obtained by an extremum with constraints equation,
applied to the position of the mass center of the given
chain.

A compact formula for the kinetic energy and
force function for a chain with one end fixed was
deduced.

The constraints introduced by fixing the other end
of the chain are dealt with by reducing the number of
degrees of freedom of the investigated chain by two,
which is an original approach. Two cases of three-link
chains are completely solved and compared with the
classical approach of mechanical systems with one
degree of freedom.

Other cases with a larger number of links were not
investigated by the authors, considering that as the
number of links increases, the existing formulas for
cable vibrations become applicable.

The obtained results of this work represent the
basis for further studies on chain dynamics, such as
forced oscillations, inclusion of energy dissipation
between the chain links. Also, the nonlinear
oscillations of chains are among the perspectives.

Appendix 1
The catenary equation.

For a freely hanging cable of mass per unit length
m (kg/m), attached in a gravitational field of
acceleration g by points A and B situated in the
vertical plane Oxy, the differential equation (2)
implies two differential equations in the vertical

plane:
i(ﬂjzo
ds\ ds
J( d (A1)
(T—y)—mg =0

Eds

The constant H resulting from the first differential
equation represents the horizontal component of the

cable’s tension: g — Tﬂ: Tcosg Where ¢(s) is the
ds

local slope angle of the cable. The second differential
equation becomes:

d (H QJ@ =mg (A2)

E dx)ds

In the initial OgXoyo plane, the elementary arc is

2
ds = dx 1+[d_yj and equation (A2) becomes:
dx

dy'
dx__ _™&  with the usual notation ' = dy

dl+y'2 H dx ‘

Applying a change of function: y’=sinh(7) it

follows: dl, = cosh ( ,7)@ . After obvious
dx dx
simplifications, eq. (A2) leads to: an =8 with a
dx H
general solution n="8x+C,. or

y' =sinh [%x + Clj . Integrating this last resulting

function, the general solution of the suspended cable
in the gravitational field can be obtained:

y=icosh(%gx+clj+6’2. (A3)

mg

Translating the system of axes with the origin O in
the lowest point of the hanging cable, the boundary
conditions, in this system of axes are:
x=0;,y=0;)'=0, the -equilibrium equation
becomes the classical common catenary static
equilibrium  curve for a  heavy cable:
y=a[ch£—lja with o-H,

a mg
constant depending on the mechanical tension in the
cable.

describing a
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