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Abstract: - Chain dynamics are of particular interest in high-voltage power lines, as chain drives in cars’ 
motors, motorcycles, maritime anchoring of ships, and even some bridge suspensions. The equilibrium and 
linear oscillations of a heavy, homogeneous chain made of identical rigid links, suspended between two 
fixed points at different heights, are investigated. The problem of the equilibrium position of each link is 
solved using an original algorithm based on Lagrange multipliers, being followed by some relevant 
numerical examples. The chain is in a gravitational field, and the kinetic energy and force function are 
deduced as an original compact formula, valid for any number of links. We obtained the Lagrange equations 
with motion constraints imposed by the fixed positions of the two ends of the chain. The free oscillations 
in the vertical plane passing through the hanging points are deduced, and several numerical examples are 
presented. 
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1. INTRODUCTION  
 

The study of chain dynamics plays an important 
role across a variety of fields, from engineering and 
marine applications to natural sciences and art. In 
engineering and infrastructure, understanding the 
behavior of chains and cables under different loads is 
essential for designing stable, durable structures like 
cable-stayed and suspension bridges. The basic 
models are presented in ref. [1], [2]. These structures 
rely on cables that must withstand environmental 
conditions such as wind and vibrations, which can 
induce complex behaviors including self-contact, 
making it crucial to analyze their dynamics to ensure 
safety and performance. For instance, in ref. [3] the 
authors explored how wind-induced vibrations affect 
cables, emphasizing the need for thorough analysis to 
prevent structural failures. Similarly, in [4] the impact 
of geometric nonlinearity on the behavior of cables is 
studied, thus demonstrating how even slight changes 
in cable curvature can significantly alter their 
dynamic response, which is critical for bridge 
stability.  It is known that chains and cables are 
fundamental components in mechanical systems like 
cranes, elevators, and conveyor belts, where accurate 
knowledge of their behavior helps optimize load 
distribution, reduce wear, and prevent mechanical 
failures. In ref. [5] Predoi et al. investigated the 

dynamics of elastic cables used in cranes. H. N. 
Arafat and A. H. Nayfeh [6] examined how primary 
resonance excitations can lead to unexpected 
vibrations in suspended cables, highlighting the 
importance of understanding dynamic responses to 
design safer and more reliable mechanical systems.In 
the field of marine and offshore engineering, chains 
are extensively used in mooring lines to anchor ships 
and offshore platforms. These chains and cables often 
experience self-contact due to currents, waves, or 
motion, affecting their performance and durability. 
Studying their dynamics allows engineers to predict 
how these chains will react under various sea 
conditions, which is vital for maintaining the stability 
of these structures.  In ref. [7], the writhing dynamics 
of cables with self- contact was investigated, 
reinforcing how external forces, such as currents and 
waves, can lead to complex behaviors that impact 
performance, especially in mooring applications. 
Additionally, understanding cable dynamics is crucial 
in the design of subsea pipelines and communication 
cables, ensuring they can endure the harsh underwater 
environment without damage.  

Beyond engineering, chain dynamics provide 
insights into natural phenomena. The study of wave 
propagation and vibration patterns in chains can 
provide insights into other physical systems, such as 
seismic waves and the behavior of flexible structures 
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in nature. For example, studies like those in [8] and 
[9] modeled and analyzed the nonlinear vibrations in 
suspended cables, thus demonstrating how these 
behaviors can help understand complex wave 
phenomena, such as seismic activity and energy 
distribution in flexible structures. Additionally, 
chains are often used in simulations to model 
complex systems, aiding scientists to understand how 
energy disperses and how different forces interact 
within a medium. 

The dynamics of chains extend even into art and 
architecture, where flexible chains and cables are 
used in innovative designs. Kinetic sculptures and art 
installations use the movement of chains to create 
visually striking patterns, and a deep understanding 
of their dynamics allows artists to achieve controlled, 
predictable motion. For instance, kinetic artist 
Alexander Calder [10] pioneered the use of mobile 
structures that respond to airflow, with the movement 
of flexible elements playing an important role in their 
aesthetic appeal. In modern architecture, flexible 
chains and cables are used to create lightweight, 
tension-based structures like stadium roofs and 
tensile pavilions, enabling architects to blend 
functionality with creativity. 

Furthermore, the study of chain dynamics has 
practical benefits, such as vibration reduction and 
noise control. By understanding how flexible 
elements behave, engineers can design systems that 
minimize unwanted vibrations, improving comfort 
and safety in various applications, from vehicles to 
industrial machinery. Recent advancements have also 
explored the potential for energy harvesting from the 
vibrations of chains and cables, combining principles 
of chain dynamics with sustainable engineering to 
develop new ways of generating renewable energy 
from wind and waves. In ref. [11], are described the 
effects of wind-induced forces on shallow cables, 
offering insights into how vibrational energy could be 
harvested for power generation. These developments 
are part of a growing field where engineers are 
innovating ways to convert mechanical vibrations 
into electrical energy, improving the efficiency and 
sustainability of renewable energy technologies.  

Previous studies, such as [9], have investigated the 
equilibrium position of an extensible but perfectly 
flexible cable, highlighting the importance of 
considering extensibility, due to the fact that 
significant differences in the cable’s shape arise 
depending on whether it is treated as extensible or 
inextensible.  

Overall, the diverse applications of chain 
dynamics highlight its significance across multiple 
disciplines. Whether in engineering, natural sciences, 
or the arts, a deeper understanding of how chains and 
cables interact under various forces enables the 

development of safer, more efficient, and more 
innovative solutions. By addressing complex 
behaviors like vibrations and self-contact, researchers 
and engineers can continue to push the boundaries of 
design and functionality.  

In this paper we examine the equilibrium position 
and free oscillations of a heavy, homogeneous chain 
of n links, totaling a length L and suspended between 
two fixed points, A and B, which are positioned at the 
same or at different heights. The chain is subjected 
only to the gravitational field. The main contributions 
of this paper consist in: a) a validated algorithm and 
computer code providing the equilibrium position of 
the chain using the Lagrange multipliers; b) a general 
formula for the kinetic energy and force function for 
a chain made on any number of links; c) the natural 
modes of vibration obtained by two methods, 
validating the results. 

The paper is organized as follows. After this 
introduction, section 2 briefly presents the catenary 
equation as being the limit case for a large number of 
chain links. Next, we present an algorithm that 
determines the chain’s equilibrium position by 
formulating and solving the equilibrium equations 
with Lagrange multipliers, which minimize the 
position of the mass center. The resulting equations 
describe the chain’s equilibrium by specifying the 
position of each link at rest. Each scenario is 
compared with the classical catenary solution. 
Section 3 focuses on the dynamics of a chain with 
both ends attached.  We deduce general formulas for 
the kinetic energy and the force function, and then we 
employ the nonholonomic Lagrange differential 
equations of the second kind in two illustrative 
examples. Conclusions and an appendix are ending 
the paper.  
 
2. EQUATIONS OF EQUILIBRIUM 
 
2.1. The hanging cable as a limiting case of 
a chain 
 

The catenary mathematical model is used for 
hanging cables, assuming perfect inextensibility, but 
no bending stiffness. The chain is inextensible, but 
each link is rigid, with ideal hinges between links. 
These differences require a detailed analysis.     

The mechanical tension T developed in the cable 
at the position vector ( )r s of it, defined by the arc 
length s along the cable, under the action of externally 
applied distributed forces p, can only be along the 
tangent to the cable: Tτ=T  in which 

dr dx dy dzi j k
ds ds ds ds

τ = = + +  is the unit vector 

tangent to the curve (cable). Equilibrium of the 
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perfectly flexible and inextensible element of arc ds 
of the cable implies a vector equation: 

 ( ) ( )s ds s ds+ − + =T T p 0  , (1) 

from which, after simplification by ds, leads to [12]:  
( ) 0

d T
p

ds
τ

+ = .                             (2) 

 
 
 
 
 
 
 
 

Figure 12. Element of cable at equilibrium 
 

This differential equation can be integrated (See 
Appendix 1) and the equilibrium position of the 
heavy cable hanging in gravitational field is [12]: 

1xy a ch
a

 = − 
 

 (3) 

in a translated coordinate system with the origin O at 

the lowest point of the hanging cable, with Ha
mg

= , 

m the mass per unit length, g the gravitational 
constant, H the horizontal component of the local 
tension T in the cable. If a chain of length L is 
suspended between two points A and B having the 
horizontal coordinates x1 and x2,  a horizontal distance 
d between them and a vertical distance h, then the 
following equations must be fulfilled: 

2 1

2 1

2 1

cosh cosh

sinh sinh

x x h
a a a

x x L
a a a

x x d

− =

− =

− =

. (4) 

This system of nonlinear equations yields the 
following nonlinear equation, which can be solved for 
the parameter a using MATLAB [13] script described 
in section 3.9.7 of ref. [14]: 

2 2

2cosh 1
2

d L h
a a

−
= + . (5) 

In the translated reference frame with origin in O 
, the cable’s lowest point, one end of the cable lies at 
x1<0, while the other end, separated by a horizontal 
distance d, lies at x2>0 and is elevated by a distance h 
relative to the first end. An approximate formula for 
the moderately tensioned catenary was deduced by 
Predoi et al. [15]. 

For a chain with many links, eq. (3) is expected to 
predict the link positions relatively accurately. 
However, in the following section, we compare the 
equilibrium positions of a chain having a relatively 
small number of links, which is a problem similar to 
a mechanism [16] or a simple robot [17] but with 
constrained motions, and prove that the similarities 
are valid only for a large number of links.  

 
2.1. Equilibrium position of a hanging chain 
  

The equilibrium position of a hanging chain with 
a small number of links was previously investigated 
by Nakagiri [18], using Lagrange multipliers and an 
iterative solving method. We consider also the 
equilibrium position as corresponding to a minimum 
with constraints of the mass center, but we derive a 
different numerical algorithm to solve the problem. 

Let us consider a number of n links, each of mass 
m and length l. When n=2 or n=3, the static 
equilibrium equations for ideal rods can solve the 
problem, and these cases serve as validation for the 
current approach. On the other hand, when n is 
relatively large, e.g. n > 20, the catenary solution can 
be used to approximate the positions of the links, and 
this scenario also serves as a validation benchmark.  

 
Figure 13. Configuration of three chain links  

 
For an intermediary number n of links, we 

consider the notations from Figure 2, measuring each 
link’s angle from the horizontal direction in order to 
simplify the comparisons with the catenary position. 

The mass center of a number n of identical links, 
each of length l is proven to be: 

( )
1

2 1 sin
2

n

c i
i

ly n i
n

ϕ
=

=  − +  ∑ . (6) 

This formula was obtained by complete induction 
starting from simple cases such as n=2, 3, 4 …; for 

instance, when n=1, we obtain 1
1

sin
2c

ly ϕ
= , and so 

on. A chain suspended between two fixed points 
O(0,0) and A(d,h) where A is horizontally displaced 
by d and elevated by h relative to O must comply to 
the following supplementary equations, representing 
these two conditions (Figure 2): 

x 

y 

φ1 

φ2 

φ3 
mg 

mg 
mg 

θ1 
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A(d,h) 

x0 

y0 

z0 

A(x1,y1) 
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1 1

cos ; sin
n n

i i
i i

d h
l l

ϕ ϕ
= =

= =∑ ∑ . (7) 

The static equilibrium position is minimizing the 
position of the mass center. The derivative of the 
function Φ(φ1 … φn), which depends on the angles φi 
must cancel, accounting for the restrictions from eq. 
(7) using the Lagrange multipliers λ and µ [19]:  
  

( )
1

1 1

2 2 1 sin
2

cos sin

n

i
i

n n

i i
i i

l n i
n

d h
l l

ϕ

λ ϕ µ ϕ

=

= =

Φ = − +

   
− − − −   

   

∑

∑ ∑
 (8) 

The following n equations are obtained: 

2 2 1cos sin cos 0, 1...
2 i i i

n i i n
n

ϕ λ ϕ µ ϕ
− +

+ − = =  (9) 

complemented by the two conditions (7) which agree 
with the results from ref. [18], but obtaining the 
solution follows a different algorithm. 

The following algorithm was adopted to solve this 
nonlinear system of equations:  
• from the last two equations of (8), that is, for   

i=n-1 and i=n, the following were obtained: 

( )
1 1

1

3cos sin cos sin1
2 sin

1 1
tan 2

n n n n

n n

n

n

n

ϕ ϕ ϕ ϕ
µ

ϕ ϕ

λ µ
ϕ

− −

−

−
=

−

 = − 
 

 (10) 

• the remaining n equations (9) were solved using 
our numerical solver script in MATLAB [13].  

To illustrate this, we consider the chain parameters 
shown in Table 1, in which n represents the number 
of links. Since for the same n we present several 
geometrical configurations, the number n is repeated. 
These include the resulting values for the catenary a, 
and the end point coordinates x1, and x2, with the 
origin placed at the catenary’s lowest point.  
 

Table 3. Numerical examples of hanging chains 
n (links) l (m) d(m) h(m) a(m) x1(m) x2(m) 
3 0.1 0.1 0 0.0176 -0.050 0.050 
3 0.1 0.2 0 0.0616 -0.100 0.100 
3 0.1 0.1 0.05 0.0178 -0.047 0.053 
4 0.1 0.3 0 0.0178 -0.047 0.053 
5   0.064 0.3 0 0.2395 -0.150 0.150 
5 0.1 0.3 0.1 0.0834 -0.1331 0.1669 
6 0.1 0.3 0.1 0.0697 -0.1383 0.1617 

 
The validation examples are for 3 link chains, 

under different configurations: one with the distance 
between the suspension points equal to the link length 
l and another with a double distance between the 

suspension points 2l (Figure 3 a, b). Both cases have 
the suspension points at the same height (h=0), for 
which the solutions can be obtained by geometrical 
means, without using any of the above equations. 

The third example (Figure 3c) considers a height 
difference of l/2 between the hanging points. 
Although a pure geometrical solution exists and was 
used for validation, the usefulness of the presented 
algorithm will be obvious for a larger number of 
links.  

 
 

Figure 14. Equilibrium position of a simple three link 
chain (red) and a catenary (dashed blue) for the first three 

cases indicated in Table 1 
 

More complex examples are illustrated in Figure 
4, where the equilibrium positions of 4, 5, 5, and         
6-link chains (shown in red) are overlaid on the 
catenary curve of the same length and attachment 
points. The example with 5 symmetric links was 
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introduced for comparison with ref. [18], which 
proves to be excellent. The efficiency of the proposed 
algorithm is clear, especially in cases with height 
differences (h≠0) between the hanging/attachment 
points. 

As the number of links increases, it is obvious that 
the equilibrium positions tend to those of the catenary 
with the same length and suspension points. For 
example, in the case of 5 links with h=0 (Figure 3 b), 
the catenary is almost covered by the chain links.  

In general, however, the existence of only an 
approximate overlaid of the chain links positions over 
the catenary proves the utility of the present study, 
since a cable model cannot be applied directly in such 
cases.  
 

Table 4. Links angles with the vertical direction for the 
chain cases from Table 1. 

n θ1 (°)  θ2 (°) θ3 (°) θ4 (°) θ5 (°) θ6 (°) 
3 0 90 180 - - - 
3 30 90 150 - - - 
3 3.98 119.97 176.31    
4 36.16 65.487 114.51 143.83 - - 
5 61.488 74.804 90.000 105.19 118.51 - 
5 29.52 60.490 122.35 151.38 161.74 - 
6 19.01 34.733 90.998 145.90 161.19 167.18 

 
In the following section, some dynamic aspects of 

the chain behavior will be investigated, with 
emphasis on the free oscillations for small 
displacements about the equilibrium position. 

The obtained angles of each link of the chain 
defined in Table 1, relative to the vertical direction   
(θi ) are indicated in Table 2. 
 
3. DIFFERENTIAL EQUATIONS OF 
MOTION IN THE VERTICAL PLANE 
 

The chain is made of n identical links, of length l 
and mass m, all being in planar motion. Even if the 
two extreme links are rotating about fixed hinges, 
these extreme links can be considered to be in planar 
motion, from the point of view of the kinetic energy 

( )
2

2 2
1

1
2 2

O
C C

JE J mvθ
θ= = +



  since
22 2

2 2

3 12 2
ml l lmθ θ θ

  = +  
   

    

The kinetic energy and the force function for a 
serial mechanism is done in most classical textbooks 
of Mechanics, but in general for only two links. The 
classical example of Lagrange equations is applicable 
for serial robotic arms where one end is hinged, and 
the opposite end is free. 

For compatibility with such existing models, the 
angle made by the links with the vertical direction: 

2
πθ ϕ= −  (the complement angle of φ), will be used 

hereafter. Also, the Oy axis will be directed 
downwards as the orientation of the gravitational 
force. 

 

 
 

Figure 15. Equilibrium position of a chain (red) with 4, 5, 
and 6 links and the associated catenary (dashed blue), for 

the last four cases from Table 1. 
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We have written the kinetic energy and force 
function for an increasing number of chain links. The 
first link is hinged to a fixed hinge, then successively 
other links are added, each hinged to the end of the 
open chain.  

For a chain of n links as defined in Figure 2, we 
have deduced by complete induction the following 
formulas for the kinetic energy and force function: 

( )

( ) ( )

2
2

1

1

1 1

1

1 3 1
2 3

2 1 cos

1 cos
2

n

i
i

n n

i j j i
i j i

n

i
i

mlE n i

n j

U mgl n i

θ

θ θ θ θ

θ

=

−

= = +

=


=  − +   




+  − +  −  


  = − +  
  

∑

∑ ∑

∑



   (11) 

In the force function, the angles θi are considered 
to be approximated by the static equilibrium values 
θi0, negligibly affected by the small oscillations. 
These formulas can be used as such, in writing the 
Lagrange equations, but only if the last chain link (of 
index n) has a free end, allowing the chain to be 
vertical in the equilibrium position.  

However, we are interested in writing the 
differential equations of motion for the chains with 
both ends attached to ideal hinges. This means that 
geometrical conditions expressed by equations (7) 
must be enforced. For small displacements, the 
equations (7) can be transformed into conditions for 
angular velocities and angular accelerations, 
respectively:  

1 1

1 1

cos 0; sin 0

cos 0; sin 0

n n

i i i i
i i
n n

i i i i
i i

θ θ θ θ

θ θ θ θ

= =

= =

= =

= =

∑ ∑

∑ ∑

 

 

. (12) 

The Lagrange differential equations of second 
kind are nonholonomic: 

( ) ( )1 1 2 2

1,..,

k k
k k k

d E E U F q F q
dt q q q
k n

λ λ
 ∂ ∂ ∂

− = + + ∂ ∂ ∂ 
=

 

  (13) 

Another possibility is to reduce the number of 
independent generalized coordinates by expressing n-
2 of them as a function of two selected generalized 
coordinates using the system of equations (12). 

In fact, the two kinematic equations, for velocities 
or accelerations, reduce by 2 the number of degrees 
of freedom of the chain. It is obvious that the 3-link 
chains shown on Figure 3 have only one degree of 
freedom.  

As an example, for a 3-link chain, with small 
displacements about the equilibrium position of each 
link, the angular velocities and accelerations of links 
2 and 3 can be expressed as a function of the angular 
velocity and acceleration of the first link:  

( )
( )
( )
( )
( )
( )
( )
( )
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20 302
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20 302
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 − 
 −
 −   =   −   
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











. (14) 

The notations θi0 , i=1,2,3 indicate equilibrium 
angles, relative to which each link oscillates.     

In this manner, a chain with three links is reduced 
to a mechanical system with one degree of freedom. 
This simple case will be analyzed in the following 
section, providing closed form solutions.  
 
4. FREE OSCILLATIONS OF CHAINS IN 
THE VERTICAL PLANE  
 

We consider in the following the particular case of 
a chain with 3 links, each of length l and mass m, with 
both ends fixed as shown in Figure 3.  

The general formulas (11) that we deduced for the 
kinetic energy and force function for a chain with n 
identical links are applied in this particular case: 

 

( )

( ) ( )

( )

2
2 2 2

1 2 3 1 2 2 1

1 3 3 1 2 3 3 2

1 2 3

7 4 1 3 cos
2 3 3 3

cos cos

5cos 3cos cos
2

mlE
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θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ

θ θ θ

= + + + −
+ − + − 

= + +

    

     (15) 

The following notations will be used in writing the 
Lagrange differential equations: 

( ) ( )
( )

11 10 12 20 13 30

21 10 22 20 23 30

21 20 10 31 30 10

32 30 20

cos ; cos ; cos ;
sin ; sin ; sin ;
cos ; cos ;

cos .

A A A
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C C

C

θ θ θ
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= − = −
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   (16) 

From eq. (13), one gets the nonholonomic 

coefficients: 
0j

k
kj

j

FA
θ θ

θ
=

∂
=
∂

which are used in (16), 
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leading to the following system of differential 
equations: 

31
1 21 2 3 1 10 1 11 2 21

23
21 1 2 3 2 20 1 12 2 22

23
31 1 2 3 3 30 1 13 2 23

1 10 2 20 3 30

1 10 2

7 3 5 cos
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+ + = + +
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+
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  

  

 

20 3 30sin 0θ θ θ+ =

 (17) 

In fact, the last two constraints equations can be 
used as in eq. (14) relating two angular velocities to 
the third one and similar for the angular accelerations. 

 
Case 1 
 

As a first example, we investigate the free 
oscillations of the chain defined in the first row of 
Table 1: n=3, d=l, and h=0. Because the system 
consists of two rotating links and one translating link 
in the middle, a simple analytical solution can be 
obtained and used to validate the following 
procedure. The equilibrium position is obvious: 
θ10=0, θ20=π/2, θ30= π, with angles determined in the 
trigonometric positive convention.  The angular 
velocities and accelerations are obtained using 
formulas (14) with the obvious case 0/0 leading to 
null angular velocity and acceleration, as seen from 
eq. (12).  
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 (18) 

 
Using these last results, the kinetic energy and 

force function become: 
 

 ( )
2

2
1 1

5 ; 4cos .
2 3 2

ml mglE U Constθ θ= = +  (19) 

 
Assuming harmonic motion of amplitude A, 

angular frequency ω, initial phase β, and motion 
about the equilibrium position: 
( ) ( )expt A i tθ ω β= + , the angular frequency of the 

small amplitude oscillations in this case can be 
obtained: 
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5
g
l

ω = . (20) 

 

This result will be used to validate the solution 
obtained by Lagrange equations with constraints. The 
coefficients from eq. (16) in which the chain’s links 
angles from Table 2 are injected become: 
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The differential equations are in this case: 
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  (22) 

It follows from (22-d) that the angular 
accelerations of the first and last link are equal. Also 

2 2 0θ λ= = . From (22-a) and (22-c), λ1 can be 

cancelled and it will be determined: 2 6
5

g
l

ω = , 

confirming the solution obtained above, using a 
different approach.  
 

 
 

Figure 16. Free oscillations in case (1) of a three links 
chain. 

 
Case 2 
 

The second example investigates the free 
oscillations of the chain defined in the second row of 
Table 1: n=3, d=2l, h=0, where the middle link is no 
longer in translation. However, an analytic solution 
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can be obtained by standard methods. We use the 
deduced algorithm for the equilibrium position: θ10= 
π/6, θ20=π/2, θ30= 5π/6, with angles determined in the 
trigonometric positive convention. The angular 
velocities and accelerations are obtained using 
formulas (14):  
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The kinetic energy and force function become: 
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Constant C1 is not relevant for the oscillation 

problem and is only contributing to the equilibrium 
position. The angular acceleration obtained in this 
case is: 
 

2 2 3
3

g
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ω = . (25) 

 
The second approach is to use the Lagrange 

equations with constraints. The coefficients from eq. 
(16), in which the chain’s links angles from Table 2 
are injected, become: 
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The differential equations are in this case: 
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It follows from (27-d) that near the equilibrium 
position, the angular velocities and accelerations of 
the first and third link are identical. From (27-e) the 
angular velocity and acceleration of the second link is 
equal but in opposite direction with those of the first 
and second link. From (27-b) can be obtained 

2
1
3

λ θ= −  . Summing the equations (27-a) and (27-c), 

one gets: 
 

1 1
3 3
2

g
l

θ θ= − .   (28) 

 
Obviously, for harmonic motions, the angular 

frequency in this case is 2 2 3
3

g
l

ω = , confirmed by 

formula (25), and the natural mode is shown on    
Figure 6.  

 

 
 

Figure 17. Free oscillations in case (2) of a three links 
chain. 

 

The use of n Lagrange equations with two 
constraints is more general than reducing the system 
to one degree of freedom, preferable for chains with 
more links. 

The two investigated cases use the same chains, 
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points is doubled. As a direct consequence, the non-
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As is well known, a decrease in the natural 
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direction. Moreover, while one of the lateral links 
raises its mass center, the other lowers it, which does 
not occur in the links of case 1. 
 
 5. CONCLUSIONS 
 

The analysis of the chain's equilibrium position 
and small oscillations with respect to this equilibrium 
position is addressed in this study. 

The equilibrium position of the n-link chain was 
obtained by an extremum with constraints equation, 
applied to the position of the mass center of the given 
chain.  

A compact formula for the kinetic energy and 
force function for a chain with one end fixed was 
deduced. 

The constraints introduced by fixing the other end 
of the chain are dealt with by reducing the number of 
degrees of freedom of the investigated chain by two, 
which is an original approach. Two cases of three-link 
chains are completely solved and compared with the 
classical approach of mechanical systems with one 
degree of freedom. 

Other cases with a larger number of links were not 
investigated by the authors, considering that as the 
number of links increases, the existing formulas for 
cable vibrations become applicable.  

The obtained results of this work represent the 
basis for further studies on chain dynamics, such as 
forced oscillations, inclusion of energy dissipation 
between the chain links. Also, the nonlinear 
oscillations of chains are among the perspectives. 
 

 
Appendix 1  
 
The catenary equation.  
 

For a freely hanging cable of mass per unit length 
m (kg/m), attached in a gravitational field of 
acceleration g by points A and B situated in the 
vertical plane Oxy, the differential equation (2) 
implies two differential equations in the vertical 
plane: 

 

0

0

d dxT
ds ds
d dyT mg
ds ds

   =   


  − =   

 (A1) 

 
The constant H resulting from the first differential 

equation represents the horizontal component of the 
cable’s tension: cosdxH T T

ds
ϕ= =  where φ(s) is the 

local slope angle of the cable. The second differential 
equation becomes: 

 
d dy dxH mg
dx dx ds

  = 
 

. (A2) 

 
In the initial O0x0y0 plane, the elementary arc is 

2

1 dyds dx
dx

 = +  
 

 and equation (A2) becomes: 
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, with the usual notation dyy
dx

′ = .  

Applying a change of function: ( )sinhy η′ =  it 

follows: ( )coshdy d
dx dx

ηη
′
= . After obvious 

simplifications, eq. (A2) leads to: d mg
dx H
η
= , with a 

general solution 1
mg x C
H

η = + , or 

1sinh mgy x C
H

 ′ = + 
 

. Integrating this last resulting 

function, the general solution of the suspended cable 
in the gravitational field can be obtained: 

 

1 2coshH mgy x C C
mg H

 = + + 
 

.           (A3) 

 
Translating the system of axes with the origin O in 

the lowest point of the hanging cable, the boundary 
conditions, in this system of axes are: 

0; 0; 0x y y′= = = , the equilibrium equation 
becomes the classical common catenary static 
equilibrium curve for a heavy cable: 

1xy a ch
a

 = − 
 

, with Ha
mg

= , describing a 

constant depending on the mechanical tension in the 
cable.  
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