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Abstract: - The study presented in this paper shows the results of simulation made on a rigid structure 
isolated with four simple friction pendulums. We created a model in SolidWorks that was used to find out 
how the pendulums radii and friction coefficients respectively the frequency of the excitation influences 
the structural response. It has also been found that the frequency of the structure does not increase with the 
frequency of excitation if the latter exceeds the natural frequency of the pendulum, but in the post-resonance 
domain it remains constant taking the value of the natural frequency of the system. 
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1. INTRODUCTION 
 

Earthquakes happen if there is a relative shift 
along fractures in the crust of the Earth. There are soil 
trepidations on a large surface around the epicenter of 
the earthquake, causing damage to the built 
environment and possibly resulting in human losses. 
Some Romania regions present a higher risk because 
of the seismic activity that originates from the 
Vrancea source [1]-[2] and the Banat source [3]. 
Important ground excitation can be produced also by 
human activity, such as blast, heavy traffic, 
construction works and so on [4]. Progresses in 
seismic isolation have been made over the last 
decades, and now there are available advanced 
solutions to reduce the effect of ground movement 
[5]-[7]. Insertion between the ground and the 

protected structure of elastomeric elements is a 
popular solution [8]. Description of devices involving 
elastic elements consisting of natural rubber or 
neoprene is largely presented in the literature [9]. A 
lead core can be added to such devices to increase the 
hysteretic effect [10]. A highly nonlinear effect is 
obtained if an elastomeric bearing is combined with a 
lead-rubber bearing resulting in the so-called hybrid 
lead rubber bearing [11]. Models of such rubber 
bearings describing their specific behavior are 
available [12]-[14]. A type of seismic isolation 
devices based on the energy dissipation by friction 
was introduced in 1985. These are known as the 
friction pendulums (FP), which can have one, two or 
three sliding surfaces [15]-[18] respectively a 
polynomial sliding surface [19]. 
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In the study presented herein we describe the 
research conducted to discover the influence of the 
sliding surface radius and that of the friction 
coefficient on the response to excitations with various 
frequencies. 

 
2. PROBLEM FORMULATION 
 

A rigid structure isolated with simple friction 
pendulums (SFP) behave in respect to the radius of 
the sliding surface. The friction coefficient of the 
involved materials has a limited, but clear influence. 
The frequency of the ground trepidation has also to be 
considered.  

For calculating the natural frequency nf  of the 
isolated system one can involve the relation: 

=2n
R

f
g

 ,                         (1) 

which is deduced from the free damped system 
oscillation. Here, the pendulum radius is denoted with 
R and the gravitational acceleration is g=9.80665 
m/s2. One can observe that the friction coefficient  
and the weight of the structure G do not influence the 
natural frequency. 

The frequency and the amplitude resulted for a 
given excitation depends on the excitation 
parameters, which are the amplitude Ae and the 
frequency fe. The task of the SFP is to maintain the 
amplitude of the displacement Amax achieved in the 
transitory regime as well as the amplitude in the 
stabilized regime Astab as small as possible, in order to 
avoid dangerous acceleration. 

During ground shacking, the inertial forces 
belonging to the structure push it in horizontal 
direction. The force caused by friction opposes to this 
action, being a reaction force. Note that the friction 
coefficient  varies with the speed. If the inertia 
exceeds the friction force, a relative displacement 
between the structure and the friction pendulum takes 
place and the structure attains another frequency fstruc 
as the excitation. This is lower as fe and 
supplementary contribute to the reduction of the 
structure’s acceleration.  

 
3. MATERIALS AND METHODS 
 

In this section we present the study on the behavior 
of the isolated structure made with help of the 
SolidWorks program, particularly involving the 
Motion module described in [20],[21]. The 3D model 
of the perfectly rigid structure was built with steel 
bars and wood plates after a laboratory-size structure 
available in our university. The structure, as the part 
denoted with 1, has the geometry and essential 
dimensions described in Figure 1.  

The ground is conceived as an assembly 
consisting of two parts. One of them is a base plate 
that is fixed, indicated as part 2 in the Figure 1,     
which is used as a reference. The second part is the 
shaking plate 3 that can shift along the base plate 
without friction. It reproduces the ground motion.   
The dimensions of the two plates are given also in 
Figure 1.  
 

 

 

Figure 1. Description of the system composed by the structure and the friction pendulum 
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Table 1. Contact condition based on friction coefficients 

Contact case Components Contact type D [-] D [mm/s2] S [-] S [mm/s2] 

1 
Structure Steel (dry) 

0.25 10.16 0.3 0.1 
Shaking plate Steel (dry) 

2 
Structure Acrylic 

0.05 10.16 0.08 0.1 
Shaking plate Steel (greasy) 

3 
Structure 

Custom 0.03 10.16 0.05 0.1 
Shaking plate 

 

The shaking plate is moved in the X direction with 
a feature of the SolidWorks program called Linear 
Motor. It can impose a displacement after a harmonic 
function. For the first simulations we used following 
parameters: Ae1=5 mm ensured by the command Max 
Displacement and eight frequencies fe1=0.75 Hz; fe2=1 
Hz; fe3=1.5 Hz; fe4=2 Hz; fe5=2.5 Hz; fe6=3 Hz; fe7=3.5 
Hz; fe8=4.5 Hz and fe9=6 Hz, ensured by the command 
Frequency.  

The pendulum’s sliding surface is realized as a 
cylindrical material extrusion applied to the shaking 
plate. In this stage of the research the radius R=260 
mm was selected and the analysis time was set for 10 
seconds. The contact between the structure and the 
shaking plate was simulated considering the static and 
dynamic friction coefficients D and S presented in 
Table 1. 

The analyses in the second stage are made for a 
time length of 30 seconds and an excitation with Ae2= 
10 mm and fe2=1 Hz. Several radii of the sliding 
surface were selected for this stage of the study.  

The initial radius was R1=110 mm and afterwards 
it was step-by-step modified by increasing it with 50 
mm until the radius value R18=960 mm was achieved. 
The three considered contact conditions are indicated 
in Table 1.  
 
3. RESULTS AND DISCUSSIONS 
 

The simulation results for the first study are 
presented in Figure 2, were the acrylic/steel contact is 
considered. The FP has 4 4=2π / 0.9774 Hznf R g  , 

determining the occurrence of resonance at this 
excitation frequency. The largest displacement is 
expected at this excitation and it is really achieved, 
Figure 3 confirming it. Estimating the response 
frequencies fstruc from Figure 2, one can observe that 
this frequency increases until the natural frequency fn 
of the system is achieved and stop increasing if fe>fn. 
In the post-resonance domain fstruc= fn. 
 

 
Figure 2. Elongation achieved in X direction for the structure isolated by SFPs with acrylic pivots and stainless steel 

sliding surfaces 
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Figure 3. Elongation achieved in X direction for different frequencies of the excitation

If e nf 2 f , the displacement of the structure 
Amax is smaller as the ground motion Ae and so a 
good isolation is accomplished. Moreover, because 
the frequency of the isolated structure does not 
increase if fe exceeds fn clearly results that the 
acceleration amplitude do not change. In 
consequence, the best seismic isolation is ensured 
by the analyzed SFP for excitation frequencies 

above 3 Hz, but an acceptable level of isolation is 
ensured also if fe is in the range 1-3 Hz. 

Next results reflect the research made by 
considering different friction coefficients and 
pendulum radii in the condition that the excitation 
frequency is maintained unchanged. The responses 
of the structure in terms of displacements in the 
horizontal direction X are given in Figure 4 for the 
resonance was passed, while the Figure 5 shows the 
behavior in the post-resonance domain. 

 

             Case 1: Steel/steel      Case 2: Acrylic/steel              Case 3: Custom 

      

    

    

       

      
Figure 4. Structural displacement evolution with the pendulum radii increase until the resonance is passed 
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                                      Case 1: Steel/steel        Case 2: Acrylic/steel      Case 3: Custom 

      

     

     

                   

        

      

     
 

Figure 5. Structural displacement evolution with the pendulum radii increase in the post-resonance domain 
 
 

 
Figure 6. Maximum amplitudes for the different pendulum radii and the three friction coefficients 
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From Figure 6 it can be observed that the effective 
isolation is assured for radii bigger then 610 mm for 
all the three friction coefficients. In consequence, for 
the excitation frequency fe2=1 Hz considered in the 
second stage of the study, the friction pendulum 
should fulfill this condition. Evidently, for friction 
pendulums working in real conditions, their design 
must consider the significant earthquake period T that 
is expected in the region of the isolated structure. 
Another conclusion rising from Figure 6 refers to the 
amplitude achieved in resonance; the higher the 
friction coefficient, the lower the amplitude is. Also, 
it ca be observed here that the friction coefficient does 
not affect the resonance frequency. 
 
4. CONCLUSIONS 
 

The paper presents a research regarding the 
identification of the response of a structure isolated 
by friction pendulums. It was found that the best 
isolation is achieved if the excitation frequency 
exceeds 1.5 times the natural frequency of the friction 
pendulum. This natural frequency is not influenced 
by the weight of the structure and the friction 
coefficient has also a low influence, but if it has 
higher values the amplitude of the oscillation 
decades. Hence, these two parameters have low 
influence on the dynamic behavior of the isolated 
structure. On the other hand, the pendulum radius has 
a significant influence on this behavior, since it is the 
parameter controlling the natural frequency of the 
pendulum. It was finally concluded that isolation can 
be made either by dissipating energy by ensuring a 
certain significant friction coefficient or by 
permitting a large relative displacement between the 
ground and the structure and avoiding in this way 
significant acceleration of the structure. The two 
constructive parameters, namely the friction 
coefficient and the pendulum radius, must be 
carefully adapted in both design cases. 
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