A Method for Colored Noise Generation

Main Article Content

Hristo ZHIVOMIROV

Abstract

The present paper addresses the generation of power-law, colored digital noise signals (sequences) with arbitrary spectral slope. In the beginning, brief background information is given about some noise features. Further, a newly proposed method is described, based on generation of a white noise signal, its transformation into the frequency domain, spectral processing and inverse transform back into the time domain. Computer simulations are performed to confirm the consistency of the algorithm, including estimation of the power spectral density and the autocorrelation, along with example of its outperformance in comparison with the corresponding in-built Matlab® function.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
2018. A Method for Colored Noise Generation. Romanian Journal of Acoustics and Vibration. 15, 1 (Aug. 2018), 14–19.
Section
Articles

How to Cite

[1]
2018. A Method for Colored Noise Generation. Romanian Journal of Acoustics and Vibration. 15, 1 (Aug. 2018), 14–19.

References

Handel P., Chung A., Noise in physical systems and 1/f fluctuations, New York, AIP, 1993.

Milotti E., ”1/f noise: A pedagogical review”, Online at: http://arxiv.org/abs/physics/0204033, Last accessed on Nov. 15th, 2017.

Timmer J., König M., “On generating power law noise”, Astronomy and Astrophysics, Vol. 300, No. 3, pp. 707-710, 1995.

Kasdin N., “Discrete simulation of colored noise and stochastic processes and 1/fα power law noise generation”, Proceedings of the IEEE, Vol. 83, No. 5, pp. 802-827, May 1995. DOI: 10.1109/5.381848

Silverman M., A certain uncertainty: Nature’s random ways, Cambridge, Cambridge University Press, 2014.

Beran J., Feng Y., Ghosh S., Kulik R., Long-Memory Processes: Probabilistic Properties and Statistical Methods, New York, Springer, 2013.

Kasdin N., Walter T., “Discrete simulation of power law noise”, Proceedings of the 1992 IEEE Frequency Control Symposium, pp. 274-283, 1992. DOI: 10.1109/FREQ.1992.270003

Shepard B., Refining sound: A practical guide to synthesis and synthesizers, Oxford, Oxford University Press, 2013.

Schroeder M., Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. New York, Dover Publications, 2009.

Federal Standard 1037C - Telecommunications: Glossary of Telecommunications Terms. Lanham, Government Institutes, 1997. Online at: https://www.its.bldrdoc.gov/fs-1037/fs-1037c.htm, Last accessed on Nov. 15th, 2017.

Box G., Muller M., “A Note on the Generation of Random Normal Deviates”, The Annals of Mathematical Statistics, Vol. 29, No. 2, pp. 610-611,1958. DOI: 10.1214/aoms/1177706645

Marsaglia G., Bray T., “A Convenient Method for Generating Normal Variables”, SIAM Review, Vol. 6, No. 3, pp. 260-264, 1964. DOI: 10.1137/1006063

Marsaglia G., Tsang W., “The Ziggurat Method for Generating Random Variables”, Journal of Statistical Software, Vol. 5, No. 8, pp. 1-7, Oct. 2000. DOI: 10.18637/jss.v005.i08

Ingle V., Proakis J., Digital Signal Processing Using MATLAB, Stamford, Cengage Learning, 2012.

Howell K., Principles of Fourier Analysis, Boca Raton, CRC Press, 2017.

Manolakis D., Ingle V., Applied Digital Signal Processing, Cambridge, Cambridge University Press, 2011.

Kwiatkowski D., Phillips P., Schmidt P., Shin Y., “Testing the null hypothesis of stationarity against the alternative of a unit root”, Journal of Econometrics, Vol. 54, No. 1-3, pp. 159-178, 1992. DOI: 10.1016/0304-4076(92)90104-Y.

Dickey D., Fuller W., “Distribution of the Estimators for Autoregressive Time Series With a Unit Root”, Journal of the American Statistical Association, Vol. 74, No. 366, pp. 427-431, Jun. 1979. DOI: 10.2307/2286348

DSP System Toolbox Reference, Natick, The MathWorks Inc., 2017. Online at: https://www.mathworks.com/help/pdf_doc/dsp/dsp_ref.pdf, Last accessed on Nov. 15th, 2017.

Zhivomirov H., “Pink, Red, Blue and Violet Noise Generation with Matlab Implementation, version 1.6”, Online at: https://www.mathworks.com/matlabcentral/fileexchange/42919-pink--red--blue-and-violet-noise-generation-with-matlab-implementation, Last accessed on Nov. 15th, 2017.

Zhivomirov H., “Arbitrary Spectral Slope Noise Generation with Matlab Implementation, version 1.1”, Online at: https://www.mathworks.com/matlabcentral/fileexchange/48628-arbitrary-spectral-slope-noise-generation-with-matlab-implementation, Last accessed on Nov. 15th, 2017.